Skip to main content
Log in

Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

During the last decades, the presence of antibiotics in different aquatic compartments has raised increasing interest and concern, since these compounds are usually persistent and bioactive pseudo pollutants. Erythromycin (ERY) is a macrolide antibiotic, prescribed for human and veterinary medicines but also used in aquaculture and livestock production. Taking into account the recorded environmental levels of ERY, its toxicity to non-target organisms has become a still poorly studied issue, particularly in fish. In this sense, this study investigated the acute and chronic effects of realistic levels of ERY on Oncorhynchus mykiss (rainbow trout), namely, through the quantification of the activity of enzymes involved in different biochemical pathways, such as detoxification (phase I—7-ethoxyresorufin O-deethylase (EROD); phase II—glutathione S-transferases (GSTs), uridine-diphosphate-glucuronosyltransferases (UGTs)), neurotransmission (acetylcholinesterase (AChE)), and energy production (lactate dehydrogenase (LDH)). Both types of exposure caused significant increases in EROD activity in liver of O. mykiss; an increase in GST activity in gills after chronic exposure was also observed. UGT branchial activity was significantly depressed, following the long-term exposure. Thus, EROD, GST, and UGT enzymatic forms seem to be involved in the biotransformation of ERY. In terms of neurotransmission and preferential pathway of energy homeostasis, the exposed organisms appear not to have been affected, as there were no significant alterations in terms of AChE and LDH activities, respectively. The here-obtained data suggest that the observed alterations in terms of detoxification enzymes may have prevented the establishment of a set of toxic responses, namely, neurotoxic and metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitio A, Vainio H (1976) UDP glucuronosyl-transferase and mixed-function oxidase activity in microsomes prepared by differential centrifugation and calcium aggregation. Acta Pharmacol Toxicol 39:555–556

    CAS  Google Scholar 

  • Ambili TR, Saravanan M, Ramesh M, Abhijith DB, Poopal RK (2013) Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Arch Environ Contam Toxicol 64(3):494–503

    CAS  Google Scholar 

  • Atli O, Ilgin S, Altuntas H, Burukoglu D (2015) Evaluation of azithromycin induced cardiotoxicity in rats. Int J Clin Exp Med 8(3):3681–3690

    CAS  Google Scholar 

  • Bae SH, Kwon MJ, Park JB, Kim D, Kim DH, Kang JS, Kim CG, Oh E, Bae SK (2014) Metabolic drug-drug interaction potential of macrolactin a and 7-O-succinyl macrolactin a assessed by evaluating cytochrome P450 inhibition and induction and UDP-glucuronosyltransferase inhibition in vitro. Antimicrob Agents Chemother 58(9):5036–5046

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Brandão FP, Rodrigues S, Castro BB et al (2013) Short-term effects of neuroactive pharmaceutical drugs on a fish species: biochemical and behavioural effects. Aquat Toxicol 144–145:218–229

    Google Scholar 

  • Burkina V, Zlabek V, Zamaratskaia G (2015) Effects of pharmaceuticals present in aquatic environment on phase I metabolism in fish. Environ Toxicol Phar 40(2):430–444

    CAS  Google Scholar 

  • Burkina V, Rasmussen MK, Pilipenko N, Zamaratskaia G (2017) Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Toxicology 375:10–27

    CAS  Google Scholar 

  • Cai C, Qiu G, Gong X, Chen Y, Zhao H (2014) Effects of erythromycin on γ-glutamyl cysteine synthetase and interleukin-1β in hyperoxia-exposed lung tissue of premature newborn rats. J Pediatr 90(5):493–499

    Google Scholar 

  • Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environ Sci Technol 37(7):1241–1248

    CAS  Google Scholar 

  • Carvalho IT, Santos L (2016) Antibiotics in the aquatic environments: a review of the European scenario. Environ Int 94:736–757

    Google Scholar 

  • Decree-Law 113/(2013) de 7 de agosto. D.R. 151, Série I. Relativo à proteção dos animais utilizados para fins científicos. Ministério da Agricultura, do Mar, do Ambiente e do Ordenamento do Território

  • Delwing-de Lima D, Wollinger LF, Casagrande AC et al (2010) Guanidino compounds inhibit acetylcholinesterase and butyrylcholinesterase activities: effect neuroprotector of vitamins E plus C. Int J Dev Neurosci 28(6):465–473

    CAS  Google Scholar 

  • Dinh QT, Alliot F, Moreau-Guigona E et al (2011) Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta 85:1238–1245

    CAS  Google Scholar 

  • Ellman GL, Courtney D, Andres VJ et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Ferreira M, Caetano M, Antunes P, Costa J, Gil O, Bandarra N, Pousão-Ferreira P, Vale C, Reis-Henriques MA (2010) Assessment of contaminants and biomarkers of exposure in wild and farmed seabass. Ecotoxicol Environ Saf 73:579–588

    CAS  Google Scholar 

  • Ginebred A, Muñoz I, de Alda ML et al (2010) Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36(2):153–162

    Google Scholar 

  • González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47:2050–2064

    Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment - a review. Chemosphere 36(2):357–393

    Google Scholar 

  • Hirsch R, Ternes TA, Haberer K, Mehlich A, Ballwanz F, Kratz KL (1998) Determination of antibiotics in different water compartments via liquid chromatography - electrospray tandem mass spectrometry. J Chromatogr A 815(2):213–223

    CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    CAS  Google Scholar 

  • Ibrahim AE, Abdel-Daim MM (2015) Modulating effects of Spirulina platensis against tilmicosin-induced cardiotoxicity in mice. Cell J 17(1):137–144

    Google Scholar 

  • Ikenaka Y, Oguri M, Saengtienchai A, Nakayama SMM, Ijiri S, Ishizuka M (2013) Characterization of phase-II conjugation reaction of polycyclic aromatic hydrocarbons in fish species: unique pyrene metabolism and species specificity observed in fish species. Environ Toxicol Pharmacol 36(2):567–578

    CAS  Google Scholar 

  • Jemec A, Drobne D, Tisler T et al (2010) Biochemical biomarkers in environmental studies—lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environ Sci Pollut Res Int 17(3):571–581

    CAS  Google Scholar 

  • Ji K, Kim S, Han S, Seo J, Lee S, Park Y, Choi K, Kho YL, Kim PG, Park J, Choi K (2012) Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: are the current environmental concentrations safe? Ecotoxicology 21(7):2031–2050

    CAS  Google Scholar 

  • Johnson AC, Keller V, Dumont E, Sumpter JP (2015) Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers. Sci Total Environ 511:747–755

    CAS  Google Scholar 

  • Kiang TK, Ensom MH, Chang TK (2005) UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 106:97–132

    CAS  Google Scholar 

  • Kim J-W, Ishibashi H, Yamauchi R, Ichikawa N, Takao Y, Hirano M, Koga M, Arizono K (2009) Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34(2):227–232

    CAS  Google Scholar 

  • Koenig S, Solé M (2014) Muscular cholinesterase and lactate dehydrogenase activities in deep-sea fish from the NW Mediterranean. Mar Environ Res 94:16–23

    CAS  Google Scholar 

  • Kolpin D, Furlong E, Meyer M et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    CAS  Google Scholar 

  • Larrey D, Funck-Brentano C, Breil P, Vitaux J, Theodore C, Babany G, Pessayre D (1983) Effects of erythromycin on hepatic drug-metabolizing enzymes in humans. Biochem Pharmacol 32(6):1063–1068

    CAS  Google Scholar 

  • Li W, Shi Y, Gao L, Liu J, Cai Y (2012) Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 89(11):1307–1315

    CAS  Google Scholar 

  • Limbu SM, Zhou L, Sun SX, Zhang ML, du ZY (2018) Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ Int 115:205–219

    CAS  Google Scholar 

  • Liu B-Y, Nie X-P, Liu W-Q, Snoeijs P, Guan C, Tsui MTK (2011) Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicol Environ Saf 74(4):1027–1035

    CAS  Google Scholar 

  • Liu J, Lu G, Ding J, Zhang Z, Wang Y (2014) Tissue distribution, bioconcentration, metabolism, and effects of erythromycin in crucian carp (Carassius auratus). Sci Total Environ 490:914–920

    CAS  Google Scholar 

  • Liu J, Cai Y, Lu G, Dan X, Wu D, Yan Z (2017a) Interaction of erythromycin and ketoconazole on the neurological, biochemical and behavioral responses in crucian carp. Environ Toxicol Pharmacol 55:14–19

    CAS  Google Scholar 

  • Liu J, Lu G, Cai Y, Wu D, Yan Z, Wang Y (2017b) Modulation of erythromycin-induced biochemical responses in crucian carp by ketoconazole. Environ Sci Pollut Res 24:5285–5292

    CAS  Google Scholar 

  • Liu L, Wu W, Zhang J, Lv P, Xu L, Yan Y (2018) Progress of research on the toxicology of antibiotic pollution in aquatic organisms. Acta Ecol Sin 38:36–41

    Google Scholar 

  • López-Roldán R, López de Alda M, Gros M et al (2010) Advanced monitoring of pharmaceuticals and estrogens in the Llobregat River basin (Spain) by liquid chromatography–triple quadrupole-tandem mass spectrometry in combination with ultra performance liquid chromatography–time of flight-mass spectrometry. Chemosphere 80:1337–1344

    Google Scholar 

  • Ma TK, Chow KM, Choy ASM et al (2014) Clinical manifestation of macrolide antibiotic toxicity in CKD and dialysis patients. Clin Kidney J 7(6):507–512

    CAS  Google Scholar 

  • Malarvizhi A, Kavitha C, Saravanan M, Ramesh M (2012) Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J King Saud Univ Sci 24(2):179–186

    Google Scholar 

  • Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14(10):2013–2054

    CAS  Google Scholar 

  • Meech R, Mackenzie PI (1997) Structure and function of uridine diphosphate glucuronosyltransferases. Clin Exp Pharmacol Physiol 24(12):907–915

    CAS  Google Scholar 

  • Minh NP, Lam TB, Trang TTD (2010) Adsorption, metabolism and degradation of erythromycin in giant freshwater prawn and tilapia aquaculture in Mekong River Delta. Pak J Nutr 9(10):935–941

    CAS  Google Scholar 

  • Monteiro M, Quintaneiro C, Nogueira AJ et al (2007) Impact of chemical exposure on the fish Pomatoschistus microps Krøyer (1838) in estuaries of the Portuguese northwest coast. Chemosphere 66(3):514–522

    CAS  Google Scholar 

  • Nie XP, Liu BY, Yu HJ, Liu WQ, Yang YF (2013) Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ Pollut 172:23–32

    CAS  Google Scholar 

  • Nunes B, Verde MF, Soares AM (2015) Biochemical effects of the pharmaceutical drug paracetamol on Anguilla anguilla. Environ Sci Pollut Res 22:11574–11584

    CAS  Google Scholar 

  • OECD (1992). Test no. 203: fish, acute toxicity test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing

  • OECD (2000) Test no. 215: fish, juvenile growth test. OECD Guidelines for the testing of Chemicals. OECD

  • Oliveira R, McDonough S, Ladewig JC et al (2013) Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environ Toxicol Pharmacol 36(3):903–912

    CAS  Google Scholar 

  • Peakall D (1992) Animal biomarkers as pollution indicators. Chapman & Hall, London

    Google Scholar 

  • Pérez RA, Albero B, Férriz M, Tadeo JL (2017) Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 146:79–85

    Google Scholar 

  • Periti P, Mazzei T, Min E et al (1992) Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet 23(2):106–131

    CAS  Google Scholar 

  • Pessayre D, Larrey D, Funck-Brentano C, Benhamou JP (1985) Drug interactions and hepatitis produced by some macrolide antibiotics. J Antimicrob Chemother 16:181–194

    CAS  Google Scholar 

  • Rai BK, Bhutia D, Pal J (2014) Cytochrome P450 3A and its role in metabolism of erythromycin by hepatic microsomes of Indian major carps, Labeo rohita (ham.), Catla catla (ham.) and Cirrhinus mrigala (ham.) Int J fish. Aqua 2(1):113–117

    Google Scholar 

  • Rhee JS, Kim BM, Jeong CB, Park HG, Leung KMY, Lee YM, Lee JS (2013) Effect of pharmaceuticals exposure on acetylcholinesterase (AChE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus. Comp Biochem Physiol C Toxicol Pharmacol 158(4):216–224

    CAS  Google Scholar 

  • Rocco L, Peluso C, Stingo V (2011) Micronucleus test and comet assay for the evaluation of zebrafish genomic damage induced by erythromycin and lincomycin. Environ Toxicol 27:598–604

    Google Scholar 

  • Rodrigues S, Antunes SC, Brandão FP, Castro BB, Gonçalves F, Nunes B (2012) Effects of anticholinesterase drugs on biomarkers and behavior of pumpkinseed, Lepomis gibbosus (Linnaeus, 1758). J Environ Monit 14(6):1638–1644

    CAS  Google Scholar 

  • Rodrigues S, Antunes SC, Correia AT et al (2016) Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. Sci Total Environ 545–546:591–600

    Google Scholar 

  • Rowland A, Miners JO, Mackenzie PI (2013) The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 45:1121–1132

    CAS  Google Scholar 

  • Salimi A, Eybagi S, Seydi E, Naserzadeh P, Kazerouni NP, Pourahmad J (2016) Toxicity of macrolide antibiotics on isolated heart mitochondria: a justification for their cardiotoxic adverse effect. Xenobiotica 46(1):82–93

    CAS  Google Scholar 

  • Salvo A, della Rocca G, Cagnardi P, Pellegrino RM (2013) Pharmacokinetics and residue depletion of erythromycin in rainbow trout Oncorhynchus mykiss (Walbaum). J Fish Dis 36:1021–1029

    Google Scholar 

  • Samanta P, Pal S, Mukherjee AK, Ghosh AR (2014) Biochemical effects of glyphosate based herbicide, excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes. Ecotoxicol Environ Saf 107:120–125

    CAS  Google Scholar 

  • Santos LH, Gros M, Rodriguez-Mozaz S et al (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461–462:302–316

    Google Scholar 

  • Saravanan M, Karthika S, Malarvizhi A, Ramesh M (2011) Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: hematological, biochemical, ionoregulatory and enzymological responses. J Hazard Mater 195:188–194

    CAS  Google Scholar 

  • Serdoz F, Voinovich D, Perissutti B, Grabnar I, Hasa D, Ballestrazzi R, Coni E, Pellegrini E (2011) Development and pharmacokinetic evaluation of erythromycin lipidic formulations for oral administration in rainbow trout (Oncorhynchus mykiss). Eur J Pharm Biopharm 78(3):401–407

    CAS  Google Scholar 

  • Sheweita SA (2000) Drug-metabolizing enzymes: mechanisms and functions. Curr Drug Metab 1:107–113

    CAS  Google Scholar 

  • Shu YZ, Johnson BM, Yang TJ (2008) Role of biotransformation studies in minimizing metabolism-related liabilities in drug discovery. AAPS J 10(1):178–192

    CAS  Google Scholar 

  • Singh P, Singh I, Kumar S et al (2014a) Developmental Genotoxicology and genotoxicity testing guidelines: an overview on erythromycin genotoxicity. Indian J Res Pharm Biotechnol 5674:1348–1356

    Google Scholar 

  • Singh P, Singh L, Mondal S et al (2014b) Erythromycin-induced genotoxicity and hepatotoxicity in mice pups treated during prenatal and postnatal period. Fundam Clin Pharmacol 28(5):519–529

    CAS  Google Scholar 

  • Smith EM, Iftikar FI, Higgins S, Irshad A, Jandoc R, Lee M, Wilson JY (2012) In vitro inhibition of cytochrome P450-mediated reactions by gemfibrozil, erythromycin, ciprofloxacin and fluoxetine in fish liver microsomes. Aquat Toxicol 109:259–266

    CAS  Google Scholar 

  • Sorensen EMB, Acosta D (1985) Comparison of dantrolene sodium with erythromycin estolate using primary cultures of rat hepatocytes. Drug Chem Toxicol 8(4):219–237

    CAS  Google Scholar 

  • Sturm A, Hodson PV, Carey JH, Hansen PD (1999) Hepatic UDP-glucuronosyltransferase in rainbow trout (Oncorhynchus mykiss) and preliminary ssessment of response to pulp mill cooking liquor. Bull Environ Contam Toxicol 62(5):608–615

    CAS  Google Scholar 

  • Takeda S, Kitajima Y, Ishii Y, Nishimura Y, Mackenzie PI, Oguri K, Yamada H (2006) Inhibition of UDP-glucuronosyltransferase 2b7-catalyzed morphine glucuronidation by ketoconazole: dual mechanisms involving a novel noncompetitive mode. Drug Metab Dispos 34(8):1277–1282

    CAS  Google Scholar 

  • Thunberg T, Ahlborg UG, Håkansson H et al (1980) Effect of 2,3,7,8-tetrachiorodibenzo-p-dioxin on the hepatic storage of retinol in rats with different dietary supplies of vitamin a (retinol). Arch Toxicol 45:273–285

    CAS  Google Scholar 

  • Tokunaga J, Okamura K, Hamada A, Shiraki N, Miyamoto S, Fujii J, Arimori K, Nakano M (2001) Basic study on gastro-intestinal toxicity caused by macrolide antibiotics. J Pharm Health Care Sci 27(4):351–355

    CAS  Google Scholar 

  • Uno T, Ishizuka M, Itakura T (2012) Cytochrome P450 (CYP) in fish. Environ Toxicol Pharmacol 34:1–13

    CAS  Google Scholar 

  • Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Gil A, Catalá M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid region (Spain) and potential ecotoxicological risk. Chemosphere 84:1336–1348

    Google Scholar 

  • Vassault A (1983) Lactate dehydrogenase. UV-method with pyruvate and NADH. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlag Chemie, Weinheim, pp 118–126

    Google Scholar 

  • Villa P, Sassella D, Corada M, Bartosek I (1988) Toxicity, uptake, and subcellular distribution in rat hepatocytes of roxithromycin, a new semisynthetic macrolide, and erythromycin base. Antimicrob Agents Chemother 32(10):1541–1546

    CAS  Google Scholar 

  • Voogt P, Janex-Habibi ML, Sache F et al (2009) Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Sci Technol 59(1):39–46

    Google Scholar 

  • Wan J, Guo P, Peng X, Wen K (2015) Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. J Hazard Mater 283:778–786

    CAS  Google Scholar 

  • Weiner L, Kreimer D, Roth E, Silman I (1994) Oxidative stress transforms acetylcholinesterase to a molten globule-like state. Biochem Biophys Res Commun 198(3):915–922

    CAS  Google Scholar 

  • Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-Odeethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30(4):347–570

    CAS  Google Scholar 

  • Wilson JM, Bunte RM, Carty AJ (2009) Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Am Assoc Lab Anim Sci 48(6):785–799

    CAS  Google Scholar 

  • Xu X, Cui Z, Wang X, Wang X, Zhang S (2018) Toxicological responses on cytochrome P450 and metabolic transferases in liver of goldfish (Carassius auratus) exposed to lead and paraquat. Ecotoxicol Environ Saf 151:161–169

    CAS  Google Scholar 

  • Yamada S, Kuno Y, Iwanaga H (1986) Effects of aminoglycoside antibiotics on the neuromuscular junction: part I. Int J Clin Pharmacol Ther Toxicol 24(3):130–138

    CAS  Google Scholar 

  • Yamazaki H, Hiroki S, Urano T, Inoue K, Shimada T (1996) Effects of roxithromycin, erythromycin and troleandomycin on their N-demethylation by rat and human cytochrome P450 enzymes. Xenobiotica 26:1143–1153

    CAS  Google Scholar 

  • Yang J, An J, Li M, Hou X, Qiu X (2013) Characterization of chicken cytochrome P450 1A4 and 1A5: inter-paralog comparisons of substrate preference and inhibitor selectivity. Comp Biochem Physiol C Toxicol Pharmacol 157(4):337–343

    CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M et al (2000) Presence of therapeutic drugs in the environment. Res Lett 355(9217):1789–1790

    CAS  Google Scholar 

  • Zuccato E, Castiglioni S, Fanelli R, Reitano G, Bagnati R, Chiabrando C, Pomati F, Rossetti C, Calamari D (2006) Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control. Environ Sci Pollut Res Int 13(1):15–21

    CAS  Google Scholar 

Download references

Acknowledgments

Sara Rodrigues and Sara C. Antunes received a Ph.D. fellowship (SFRH/BD/84061/2012) and a post-doc grant (SFRH/BPD/109951/2015), respectively, by the Portuguese Foundation for Science and Technology (FCT). Bruno Nunes was hired through the Investigator FCT program (IF/01744/2013).

Funding

This research was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by Foundation for Science and Technology (FCT) and European Regional Development Fund (ERDF), in the framework of the program PT2020. This research was also financially supported for CESAM (UID/AMB/50017-POCI-01-0145-FEDER-007638), to FCT/MCTES through national funds (PIDDAC), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nunes.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, S., Antunes, S.C., Correia, A.T. et al. Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment. Environ Sci Pollut Res 26, 227–239 (2019). https://doi.org/10.1007/s11356-018-3494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3494-9

Keywords

Navigation