Skip to main content
Log in

Characterization and quality assessment of recycled post-consumption poly(ethylene terephthalate) (PET)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, the recycled post-consumption polyethylene terephthalate (PET) flakes were investigated as possible raw materials for the production of food packaging. After heating at 220 °C for 1 h, a steaming stage was conducted as a control test to assess the quality of the product. Different samples were characterized by 1H-NMR, FT-IR, DSC/TGA analysis, viscosity index (VI), and trace metals analysis. The results showed that the recycled post-consumed PET flakes’ properties were generally conform to the standard norms of PET except the color of some flakes turned to yellow. Subsequently, a complementary study was undertaken to assess whether the material could be possibly reused for food packaging. For this purpose, rheological, thermal, and mechanical characterizations were performed. The results of the comparative study between the virgin and the recycled PET flakes concluded that the PET recycling affected the rheological properties but did not have any significant effect on their thermal and mechanical characteristics. Hence, it was deduced that the post-consumed PET flakes could be reused as a packaging material except food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Assadi R, Colin X, Verdu J (2004) Irreversible structural changes during PET recycling by extrusion. Polym 45:4403–4412

    Article  CAS  Google Scholar 

  • Awaja F, Pavel D (2005) Recycling of PET (Review). Eur Polym J 41:1453–1477

    Article  CAS  Google Scholar 

  • Awaja F, Daver F, Kosior E (2004) Recycled poly(ethylene terephthalate) chain extention by a reactive extrusion process. Polym Eng Sci 44:1579–1587

    Article  CAS  Google Scholar 

  • Botelho G, Queiros A, Liberal S, Gijsman P (2001) Studies on thermal and thermo-oxidative degradation of poly(ethylene terephthalate) and poly(butylene terephthalate). Polym Degrad Stab 74:39–48

    Article  CAS  Google Scholar 

  • Carta D, Cao G, D’Angeli C (2003) Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis. Environ Sci Pollut Res 10:390–394

    Article  CAS  Google Scholar 

  • Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798

    Article  CAS  Google Scholar 

  • Castro Lopez MM, Ares Pernas AI, Lopez MJA, Latorre AL et al (2014) Assessing changes on poly(ethylene terephthalate) properties after recycling: mechanical recycling in laboratory versus postconsumer recycled material. Mater Chem Phys 147:884–894

    Article  CAS  Google Scholar 

  • Chilton T, Burnley S, Nesaratnam S (2010) A life cycle assessment of the closed-loop recycling and thermal recovery of post-consumer PET. Resour Conserv Recycl 54:1241–1249

    Article  Google Scholar 

  • Ciolacu CF, Choudhury LNR, Naba K (2006) Colour formation in poly(ethylene terephthalate) during melt processing. Polym Degrad Stab 91:875–885

    Article  CAS  Google Scholar 

  • Colin X, Verdu J (2006) Polymer degradation during processing. Comptes Rendus Chimie Académie des Sciences Chimie 9:1380–1390

  • Coltelli MB, Bianchi S, Aglietto M (2007) Poly(ethylene terephthalate) (PET) degradation during the Zn catalysed transesterification with dibutyl maleate functionalized polyolefins. Polym 48:1276–1286

    Article  CAS  Google Scholar 

  • Dimitrov N, Krehula LK, Sirocic AP, Hrnjak-Murgic Z (2013) Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym Degrad Stab 98:972–979

    Article  CAS  Google Scholar 

  • Dombre C, Marais S, Chappey C, Lixon-Buquet C, Chalier P (2014) The behaviour of wine aroma compounds related to structure and barrier properties of virgin, recycled and active PET membranes. J Membr Sci 463:215–225

    Article  CAS  Google Scholar 

  • Dzieciol M, Trzeszczynski J (1998) Studies of temperature influence on volatile thermal degradation products of poly(ethylene terephthalate). J Appl Polym Sci 69:2377–2381

    Article  CAS  Google Scholar 

  • Dzieciol M, Trzeszczynski J (2000) Volatile products of poly(ethylene terephthalate) thermal degradation in nitrogen atmosphere. J Appl Polym Sci 77:1894–1901

    Article  CAS  Google Scholar 

  • Edge M, Allen NS, Wiles R (1994) Polymer paper identification of luminescent species contributing to the yellowing of poly(ethylene terephthalate) on degradation. The Manchester Metropolitan University, and W. McDonald and S. V. Mortlock. ICI Films, Wilton, UK

  • Edge M, Willes R, Allen NS, McDonald WA et al (1996) Characterisation of the species responsible for yellowing in melt degraded aromatic polyesters I: yellowing of poly(ethylene terephthalate). Polym Degrad Stab 53:141–151

    Article  CAS  Google Scholar 

  • Fashandi H, Zadhoush A, Haghighat M (2008) Effect of orientation and crystallinity on the photodegradation of poly(ethylene terephthalate) fibers. Polym Eng Sci 48:949–956

    Article  CAS  Google Scholar 

  • Fechine GJM, Rabello MS, Souto Maior RM, Catalani LH (2004) Surface characterization of photodegraded poly(ethylene terephthalate). The effect of ultraviolet absorbers. Polym 45:2303–2308

    Article  CAS  Google Scholar 

  • Fraternali F, Spadea S, Berardi VP (2014) Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes. Constr Build Mater 61:293–302

    Article  Google Scholar 

  • Gantillon B, Spitz R, McKenna TF (2009) The solid state postcondensation of PET, 2a toward the development of a new dispersed phase solid state process. Macromol Mater Eng 289:106–112

    Article  CAS  Google Scholar 

  • Geol S (2006) Stratégies de modifications physico-chimiques des polyesters semi-cristallins. Application à la fabrication de bouteilles en poly(éthylène téréphtalate)

  • Holland BJ, Hay JN (2002a) The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy. Polym 43:1835–1847

    Article  CAS  Google Scholar 

  • Holland BJ, Hay JN (2002b) Analysis of comonomer content and cyclic oligomers of poly(ethylene terephthalate). Polym 43:1797–1804

    Article  CAS  Google Scholar 

  • International Standardization Organization (2003) ISO 17294–2 standard method

  • Jabbarin SA (1996) Poly(ethylene terephthalate). In: Polymeric materials encyclopaedia.8 New York, CRC press 6114

  • Karayannidis GP, Psalida EA (2000) Chain extension of recycled poly(ethylene terephthalate) with 2,2-(1,4-phenylene) bis(2-oxazoline). J Appl Polym Sci 77:2206–2211

    Article  CAS  Google Scholar 

  • Kenwright AM, Peace SK, Richerds RW, Bunn A et al (1999) End group modification in poly(ethylene terephthalate). Polym 40:2035–2040

    Article  CAS  Google Scholar 

  • Kong Y, Hay JN (2003) Multiple melting behaviour of poly(ethylene terephthalate). Polym 44:623–633

    Article  CAS  Google Scholar 

  • Meng T, Klepacka AM, Florkowski WJ, Braman K (2015) What drives an environmental horticultural firm to start recycling plastics? Results of a Georgia survey. Resour Conserv Recycl 102:1–8

    Article  Google Scholar 

  • Nait-Ali LK, Colin X, Bergeret A (2011) Kinetic analysis and modelling of PET macromolecular changes during its mechanical recycling by extrusion. Polym Degrad Stab 96:236–246

    Article  CAS  Google Scholar 

  • Nakatani J, Konno K, Moriguchi Y (2017) Variability-based optimal design for robust plastic recycling systems. Resour Conserv Recycl 116:53–60

    Article  Google Scholar 

  • Règlement (UE) No 10/2011 de la Commission du 14 janvier 2011 concernant les matériaux et objets en matière plastique destinés à entrer en contact avec des denrées alimentaires (Texte présentant de l’intérêt pour l’EEE)

  • Well F (2011) An overview: twenty years of PET bottle to bottle recycling. Resour Conserv Recycl 55:856–875

    Google Scholar 

  • Wunderlich B (1973) Macromolecular physics 1 a. Press New York and London 1:389

Download references

Acknowledgments

This research was carried out in the framework of a MOBIDOC thesis funded by the European Union in the frame of PASRI program. This study was supported by IMP@Lyon 1 for the mechanical and thermal studies. The authors would like to thank Dr. Ayadi Hajji for his help with proofreading, correcting the English, and editing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Ammar.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, F., Fenouillot, F., Mehri, A. et al. Characterization and quality assessment of recycled post-consumption poly(ethylene terephthalate) (PET). Environ Sci Pollut Res 25, 23307–23314 (2018). https://doi.org/10.1007/s11356-018-2390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2390-7

Keywords

Navigation