Skip to main content

Advertisement

Log in

An innovative approach to attached cultivation of Chlorella vulgaris using different materials

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This article investigates the innovative attached cultivation of Chlorella vulgaris (C. vulgaris) using different materials as an alternative to high capital techniques of harvesting such as centrifugation, flocculation, and filtration. A simple attached algal cultivation system was proposed that was equipped by 10 submerged supporting materials which can harvest algal cells, efficiently. The effect of operational parameters such as light intensity, the rate of aeration, and auto-harvesting time was investigated. A chip, durable, and abundant cellulosic material (Kaldnes carriers covered by kenafs, KCCKs) was proposed for auto-harvesting C. vulgaris cells. The results revealed that optimum aeration rate, light intensity, and auto-harvesting of microalgal cells were 3.6 vvm, 10,548 W/m2, and 12 days, respectively. Six of these KCCKs had the highest biofilm formation percent up to 33%. In this condition, the rate of cell growth increased to 0.6 mg/cm2. Therefore, this system can be used for appropriate auto-harvesting of microalgae in the attached growth systems. C. vulgaris biomass composition is valuable for biodiesel, bioethanol, and animal protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T (2012) A review of effect of light on microalgae growth, Proceedings of the world congress on Engineering, 4–6

  • Alavijeh RS, Tabandeh F, Tavakoli O, Karkhane A, Shariati P (2015) Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor. J Oleo Sci 64:69–74

    Article  CAS  Google Scholar 

  • Atiku H, Mohamed R, Al-Gheethi A, Wurochekke A, Kassim AHM (2016) Harvesting of microalgae biomass from the phycoremediation process of greywater. Environ Sci Pollut Res 23:24624–24641

    Article  CAS  Google Scholar 

  • Bertoldi FC, Sant'Anna E, Oliveira JLB (2008) Chlorophyll Content And Minerals Profile In The Microalgae Chlorella Vulgaris Cultivated In Hydroponic Wastewater. Ciência Rural 38: 54–58.

    Article  CAS  Google Scholar 

  • Biller P, Ross A (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Brummer Y, Cui SW (2005) Understanding carbohydrate analysis. Food carbohydrates: chemistry, physical properties and applications:1–38. https://doi.org/10.1201/9780203485286.ch2

  • Chacón-Lee T, González-Mariño G (2010) Microalgae for “healthy” foods possibilities and challenges. Compr Rev Food Sci Food Saf 9:655–675

    Article  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    Article  CAS  Google Scholar 

  • Connon R (2007) Culturing of Chlorella vulgaris—standard operating procedure. Daphnia Research group (University of Reading). Cited in: 2018.02.28. http://www.biosci.rdg.ac.uk/Research/eb/daphnia.htm

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect Of Temperature And Nitrogen Concentration On The Growth And Lipid Content Of Nannochloropsis Oculata And Chlorella Vulgaris For Biodiesel Production. Chem Eng Process. Process Intensif 48: 1146–1151.

    Article  CAS  Google Scholar 

  • Daliry S, Hallajsani A, Mohammadi Roshandeh J, Nouri H, Golzary A (2017) Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global J Environ Sci Manag 3:217–230

    CAS  Google Scholar 

  • da Silva MF, Casazza AA, Ferrari PF, Aliakbarian B, Converti A, Bezerra RP, Porto ALF, Perego P (2017) Recovery of phenolic compounds of food concern from Arthrospira platensis by green extraction techniques. Algal Res 25:391–401. https://doi.org/10.1016/j.algal.2017.05.027

    Article  Google Scholar 

  • Derakhshan Z, Mahvi AH, Ehrampoush MH, Ghaneian MT, Yousefinejad S, Faramarzian M, Mazloomi SM, Dehghani M, Fallahzadeh H (2018) Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor. Ecotoxicol Environ Saf 152:1–7. https://doi.org/10.1016/j.ecoenv.2018.01.024

    Article  CAS  Google Scholar 

  • Gao F, Yang Z-H, Li C, Zeng G-M, Ma D-H, Zhou L (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179:8–12

    Article  CAS  Google Scholar 

  • Genin SN, Aitchison JS, Allen DG (2014) Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol 155:136–143

    Article  CAS  Google Scholar 

  • Green B, Durnford D (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol 47:685–714

    Article  CAS  Google Scholar 

  • Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Mancini Filho J, Torres RP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  Google Scholar 

  • Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34:757–763

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huang Y, Xiong W, Liao Q, Fu Q, Xia A, Zhu X, Sun Y (2016) Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide. Bioresour Technol 222:367–373

    Article  CAS  Google Scholar 

  • Hultberg M, Jönsson HL, Bergstrand K-J, Carlsson AS (2014) Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour Technol 159:465–467

    Article  CAS  Google Scholar 

  • Illman A, Scragg A, Shales S (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  Google Scholar 

  • John RP, Anisha G, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  • Jones OG (2016) Recent advances in the functionality of non-animal-sourced proteins contributing to their use in meat analogs. Curr Opin Food Sci 7:7–13

    Article  Google Scholar 

  • Kay RA, Barton LL (1991) Microalgae as food and supplement. Crit Rev Food Sci Nutr 30:555–573

    Article  CAS  Google Scholar 

  • Khoeyi ZA, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20:41–49

    Article  CAS  Google Scholar 

  • Khoo CG, Lam MK, Lee KT (2016) Pilot-scale semi-continuous cultivation of microalgae Chlorella vulgaris in bubble column photobioreactor (BC-PBR): hydrodynamics and gas–liquid mass transfer study. Algal Res 15:65–76

    Article  Google Scholar 

  • Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, Lee SH, Ahn CY (2014) Higher biomass productivity of microalgae in an attached growth system, using wastewater. J Microbiol Biotechnol 24:1566–1573

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  • Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010) Enhanced Lipid Production Of Chlorella Vulgaris By Adjustment Of Cultivation Conditions. Bioresour Technol 101: 6797–6804.

    Article  CAS  Google Scholar 

  • Mahdavi M, Mahvi AH, Pourzamani H, Fatehizadeh A, Ebrahimi A (2017) High turbid water treatment by Kenaf fibers: a practical method for individual water supply and remote areas. Desalin Water Treat 76:225–231

    Article  CAS  Google Scholar 

  • Månsson S (2012) Cultivation of Chlorella vulgaris in nutrient solution from greenhouse tomato production: a possibility to reduce nutrient levels and produce commercially interesting metabolites, Second cycle, A2E. Alnarp: SLU, Plant Breeding and Biotechnology (until 121231), sweden

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Milano J, Ong HC, Masjuki H, Chong W, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197

    Article  Google Scholar 

  • Petkov G, Garcia G (2007) Which are fatty acids of the green alga Chlorella? Biochem Syst Ecol 35:281–285

    Article  CAS  Google Scholar 

  • Phukan MM, Chutia RS, Konwar B, Kataki R (2011) Microalgae Chlorella as a potential bio-energy feedstock. Appl Energy 88:3307–3312

    Article  CAS  Google Scholar 

  • Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P (2013) Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol 40:781–796

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  • Qin L, Wang Z, Sun Y, Shu Q, Feng P, Zhu L, Xu J, Yuan Z (2016) Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res Int 23:8379–8387

    Article  CAS  Google Scholar 

  • Richmond A, Hu Q (2013) Handbook of microalgal culture: applied phycology and biotechnology. Wiley https://doi.org/10.1002/9781118567166

  • Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278

    Article  Google Scholar 

  • Schnurr PJ, Allen DG (2015) Factors affecting algae biofilm growth and lipid production: a review. Renew Sust Energ Rev 52:418–429

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  CAS  Google Scholar 

  • Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sust Energ Rev 15:1918–1927

    Article  CAS  Google Scholar 

  • Thomas WH, Tornabene TG, Weissman J (1984) Screening for lipid yielding microalgae: activities for 1983. Final subcontract report, Solar Energy Research Inst., Golden, CO (USA)

  • Tokuşoglu Ö, Üunal M (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68:1144–1148

    Article  Google Scholar 

  • Waghmare AG, Salve MK, LeBlanc JG, Arya SS (2016) Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresour Bioprocess 3:16

    Article  Google Scholar 

  • Yusof YAM, Basari JMH, Mukti NA, Sabuddin R, Muda AR, Sulaiman S, Makpol S, Ngah WZW (2011) Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. Afr J Biotechnol 10:13536–13542

    CAS  Google Scholar 

  • Zhuang L-L, Hu H-Y, Wu Y-H, Wang T, Zhang T-Y (2014) A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae. Bioresour Technol 153:399–402

    Article  CAS  Google Scholar 

Download references

Funding

This study is a part of an approved research project (no. 194075) performed at Isfahan University of Medical Sciences, Iran, and is funded by the Vice research of Isfahan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Ebrahimi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, N., Shafiee Alavijeh, R., Abdolahnejad, A. et al. An innovative approach to attached cultivation of Chlorella vulgaris using different materials. Environ Sci Pollut Res 25, 20097–20105 (2018). https://doi.org/10.1007/s11356-018-2177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2177-x

Keywords

Navigation