Skip to main content
Log in

Ozone risk assessment in three oak species as affected by soil water availability

  • Ozone and plant life: the Italian state-of-the-art
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To derive ozone (O3) dose-response relationships for three European oak species (Quercus ilex, Quercus pubescens, and Quercus robur) under a range of soil water availability, an experiment was carried out with 2-year-old potted seedlings exposed to three levels of water availability in the soil and three levels of O3 pollution for one growing season in an ozone free-air controlled exposure (FACE) facility. Total biomass losses were estimated relative to a hypothetical clean air at the pre-industrial age, i.e., at 10 ppb as daily average (M24). A stomatal conductance model was parameterized with inputs from the three species for calculating the stomatal O3 flux. Exposure-based (M24, W126, and AOT40) and flux-based (phytotoxic O3 dose (POD)0–3) dose-response relationships were estimated and critical levels (CL) were calculated for a 5% decline of total biomass. Results show that water availability can significantly affect O3 risk assessment. In fact, dose-response relationships calculated per individual species at each water availability level resulted in very different CLs and best metrics. In a simplified approach where species were aggregated on the basis of their O3 sensitivity, the best metric was POD0.5, with a CL of 6.8 mmol m−2 for the less O3-sensitive species Q. ilex and Q. pubescens and of 3.5 mmol m−2 for the more O3-sensitive species Q. robur. The performance of POD0, however, was very similar to that of POD0.5, and thus a CL of 6.9 mmol m−2 POD0 and 3.6 mmol m−2 POD0 for the less and more O3-sensitive oak species may be also recommended. These CLs can be applied to oak ecosystems at variable water availability in the soil. We conclude that PODy is able to reconcile the effects of O3 and soil water availability on species-specific oak productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Alonso R, Elvira S, Sanz MJ, Gerosa G, Emberson LD, Bermejo B, Gimeno BS (2008) Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes. Environ Pollut 155:473–480. doi:10.1016/j.envpol.2008.01.032

    Article  CAS  Google Scholar 

  • Alonso R, Elvira S, González-Fernández I, Calvete H, García-Gómez H, Bermejo V, Sparks J (2014) Drought stress does not protect L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity. Plant Biol 16(2):375–384

  • Braun S, Schindler C, Leuzinger S (2010) Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations. Environ Pollut 158:2954–2963. doi:10.1016/j.envpol.2010.05.028

    Article  CAS  Google Scholar 

  • Büker P, Feng Z, Uddling J, Briolat A et al (2015) New flux based dose-response relationships for ozone for European forest tree species. Environ Pollut 206:163–174. doi:10.1016/j.envpol.2015.06.033

    Article  Google Scholar 

  • Butkovic V, Cvitas T, Klasing L (1990) Photochemical ozone in the Mediterranean. Sci Total Environ 99:145–151. doi:10.1016/0048-9697(90)90219-K

    Article  CAS  Google Scholar 

  • Calatayud V, Cervero J, Calvo E, García Breijo FJ, Reig Armiñana J, Sanz M (2011) Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environ Pollut 159:55–63. doi:10.1016/j.envpol.2010.09.024

    Article  CAS  Google Scholar 

  • CLRTAP (2015) Mapping critical levels for vegetation. Chapter III of manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects. Risks and trends. UNECE convention on long-range transboundary air pollution; accessed on 14 Apr 2016 on web at www.icpmapping.org

  • Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C, Guidi L, Lorenzini G (2016) Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol Plant 157:69–84. doi:10.1111/ppl.12402

    Article  CAS  Google Scholar 

  • De Marco A, Sicard P, Vitale M, Carriero G, Renou C, Paoletti E (2015) Metrics of ozone risk assessment for southern European forests: canopy moisture content as a potential plant response indicator. Atmos Environ 120:182–190. doi:10.1016/j.atmosenv.2015.08.071

    Article  Google Scholar 

  • De Marco A, Sicard P, Fares S, Tuovinen JP, Anav A, Paoletti E (2016) Assessing the role of soil water limitation in determining the phytotoxic ozone dose (PODY) thresholds. Atmos Environ 147:88–97. doi:10.1016/j.atmosenv.2016.09.066

    Article  Google Scholar 

  • Dixon M, Le Thiec D, Garrec JP (1998) Reactions of Norway spruce and beech trees to 2 years of ozone exposure and episodic drought. Environ Exp Bot 40:77–91. doi:10.1016/S0098-8472(98)00023-9

    Article  Google Scholar 

  • Emberson LD, Ashmore MR, Cambridge HM, Tuovinen JP, Simpson D (2000) Modelling stomatal flux across Europe. Environ Pollut 109:403–413. doi:10.1016/S0269-7491(00)00043-9

    Article  CAS  Google Scholar 

  • EPA (2008) National Ambient Air Quality Standards for Ozone. 40 CFR Parts 50 and 58. Environmental Protection Agency, EPA-HQ-OAR-2005-0172; FRL-8544-3; RIN 2060-AN24. Fed Regist 73(60):16435–16514

  • EPA (2015) National Ambient Air Quality Standards for Ozone. 40 CFR Part 50, 51, 52, et al. Final Rule, Environmental Protection Agency, EPA–HQ–OAR–2008–0699; FRL–9933–18–OAR. Fed Register 80(206):65291–65468

  • Epron D, Dreyer E (1993) Long-term effects of drought on photosynthesis of adult oak trees [Quercus petraea (Matt) Liebl. and Quercus robur L.] in a natural stand. New Phytol 125:381–389. doi:10.1111/j.1469-8137.1993.tb03890

    Article  Google Scholar 

  • Fares S, Matteucci G, Scarascia Mugnozza G, Morani A, Calfapietra C, Salvatori E, Fusaro L, Manes F, Loreto F (2013) Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest. Atmospheric environment 67:242–251. doi:10.1016/j.atmosenv.2012.11.007

    Article  CAS  Google Scholar 

  • Fowler D (2008) Ground-level ozone in the 21st century: future trends. Impacts and policy implications. The Royal Society, London

  • Fuhrer J (1994) The critical level for ozone to protect agricultural crops—an assessment of data from European open-top chamber experiments In: Fuhrer J, Achermann B (eds). Critical Levels for Ozone — A UNECE Workshop Report, vol 16. Schriftenreihe der FAC, Liebefeld, pp. 42–57

  • Gerosa G, Fusaro L, Monga R, Finco A, Fares S, Manes F, Maruzuoli R (2015) A flux-based assessment of above and below ground biomass of Holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations. Atmos Environ 113:41–49. doi:10.1016/j.atmosenv.2015.04.066

    Article  CAS  Google Scholar 

  • Hoshika Y, Paoletti E, Omasa K (2012a) Parameterization of Zelkova serrata stomatal conductance model to estimate stomatal ozone uptake in Japan. Atmos Environ 55:271–278

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada N, Koike T (2012b) Modeling of stomatal ozone conductance for estimating ozone uptake of Fagus crenata under experimentally enhanced free-air ozone exposure. Water Air Soil Pollut 223:3893–3901. doi:10.1016/j.envpol.2013.09.025

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada M, Koike T (2013) Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Ann Bot 112:1149–1158. doi:10.1093/aob/mct166

    Article  CAS  Google Scholar 

  • Hoshika Y, Katata G, Deushi M, Watanabe M, Koike T, Paoletti E (2015) Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Nat Sci Rep 5:9871. doi:10.1038/srep09871

    Article  CAS  Google Scholar 

  • Jarvis PG (1976) Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philos Trans R Soc Lond B 273:593–610. doi:10.1098/rstb.1976.0035

    Article  CAS  Google Scholar 

  • Karlsson PE, Uddling J, Braun S, Broadmeadow M, Elvira S, Gimeno BS, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2004) New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos Environ 38:2283–2294. doi:10.1016/j.atmosenv.2004.01.027

    Article  CAS  Google Scholar 

  • Klein T (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28:1313–1320. doi:10.1111/1365-2435.12289

    Article  Google Scholar 

  • Larcher W (2003) Physiological plant ecology. Springer, Berlin

    Book  Google Scholar 

  • Lefohn AS, Foley JK (1993) Establishing relevant ozone standards to protect vegetation and human health: exposure/dose-response considerations. J Air Waste 43(1):106–112

    Article  CAS  Google Scholar 

  • Lefohn AS, Laurence JA, Kohut RJ (1988) A comparison of indices that describe the relationship between exposure to ozone and reduction in the yield of agricultural crops. Atmos Environ 22:1229–1240

    Article  Google Scholar 

  • Li L, Manning WJ, Tong L, Wang X (2015) Chronic drought stress reduced but not protected shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China. Environ Pollut 201:34–41. doi:10.1016/j.envpol.2015.02.023

    Article  CAS  Google Scholar 

  • Manes F, Vitale M, Donato E, Paoletti E (1998) O3 and O3+CO2 effects on a Mediterranean evergreen broadleaf tree, holm oak (Quercus ilex L.) Chemosphere 36:801–806. doi:10.1016/S0045-6535(97)10127-8

    Article  CAS  Google Scholar 

  • Martin-StPaul NK, Limousin JM, Rodríguez-Calcerrada J, Ruffault J, Rambal S, Letts MG, Misson L (2012) Photosynthetic sensitivity to drought varies among populations of Quercus ilex along a rainfall gradient. Funct Plant Biol 39:25–37. doi:10.1071/FP11090

    Article  Google Scholar 

  • Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014) A new look at water transport regulation in plants. New Phytol 204(1):105–115

  • Matyssek R, Le Thiec D, Löw M, Dizengremel P, Nunn AJ, Häberle KH (2006) Interactions between drought and O3 stress in forest trees. Plant Biol 8:11–17. doi:10.1055/s-2005-873025

    Article  CAS  Google Scholar 

  • Mauzerall DL, Wang X (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure-reconciling science and standard setting. Annu Rev Energy Environ 26:237–268

    Article  Google Scholar 

  • Mills G, Hayes F, Simpson D, Emberson L, Norris D, Harmens H, Büker P (2011) Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990-2006) in relation to AOT40- and flux- based risk maps. Glob Chang Biol 17:592–613. doi:10.1111/j.1365-2486.2010.02217.x

    Article  Google Scholar 

  • Mintz Y, Walker GK (1993) Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature. J Appl Meteorol 32:1305–1334. doi:10.1175/1520-0450(1993)032<1305:GFOSMA>2.0.CO;2

    Article  Google Scholar 

  • Miyazawa S, Satomi S, Terashima I (1998) Slow leaf development of evergreen broad-leaved tree species in Japanese warm temperate forests. Ann Bot 82:859–869. doi:10.1006/anbo.1998.0770

    Article  Google Scholar 

  • Morecroft MD, Roberts JM (1999) Photosynthesis and stomatal conductance of mature canopy oak (Quercus robur) and sycamore (Acer pseudoplatanus) trees throughout the growing season. Funct Ecol 13:332–342. doi:10.1046/j.1365-2435.1999.00327.x

    Article  Google Scholar 

  • Muraoka H, Tang Y, Terashima I, Koizumi H, Washitani I (2000) Contributions of diffusional limitation. Photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ 23:235–250. doi:10.1046/j.1365-3040.2000.00547.x

    Article  CAS  Google Scholar 

  • Niinemets U (2015) Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytol 205:79–96. doi:10.1111/nph.13001

    Article  Google Scholar 

  • Nussbaum S, Fuhrer J (2000) Difference in ozone uptake in grassland species between open-top chambers and ambient air. Environ Pollut 109:463–471. doi:10.1016/S0269-7491(00)00049-X

    Article  CAS  Google Scholar 

  • Paoletti E (2006) Impact of ozone on Mediterranean forests: a review. Environ Pollut 144:463–474. doi:10.1016/j.envpol.2005.12.051

    Article  CAS  Google Scholar 

  • Paoletti E (2007) Ozone impacts on forests. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 2(68):13

    Article  Google Scholar 

  • Paoletti E, Grulke NE (2005) Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ Pollut 137:483–493. doi:10.1016/j.envpol.2005.01.035

    Article  CAS  Google Scholar 

  • Paoletti E, Seufert G, Della Rocca G, Thomsen H (2007) Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring. Environ Pollut 147:516–524. doi:10.1016/j.envpol.2006.08.039

    Article  CAS  Google Scholar 

  • Paoletti E, Materassi A, Fasano G, Hoshika Y, Carriero G, Silaghi D, Badea O (2017) A new-generation 3D ozone FACE (free air controlled exposure). Sci Total Environ 575:1407–1414. doi:10.1016/j.scitotenv.2016.09.217

    Article  CAS  Google Scholar 

  • Parrish DD, Lamarque JF, Naik V, Horowitz L, Shindell DT, Staehelin J, Derwent R, Cooper OR, Tanimoto H, Volz-Thomas A, Gilge S, Scheel HE, Steinbacher M, Frohlich M (2014) Long-term changes in lower tropospheric baseline ozone concentrations; comparing chemistry-climate models and observations at northern mid-latitudes. J Geophys Res Atmos 119:5719–5736. doi:10.1002/2013JD021435

    Article  CAS  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Picon C, Guehl JM, Ferhi A (1996) Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus Pinaster) and a drought-tolerant (Quercus petraea) species under present and elevated atmospheric CO2 concentrations. Plant Cell Environ 19:182–190. doi:10.1111/j.1365-3040.1996.tb00239.x

    Article  Google Scholar 

  • Pollastrini M, Desotgiu R, Cascio C, Bussotti F, Cherubini P, Saurer M, Gerosa G, Marzuoli R (2010) Growth and physiological responses to ozone and mild drought stress of tree species with different ecological requirements. Trees 24:695–704. doi:10.1007/s00468-010-0439-4

    Article  Google Scholar 

  • Potvin C, Tardif S (1988) Sources of variability and experimental designs in growth chambers. Funct Ecol 2:123–130. doi:10.2307/2389472

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969. doi:10.2307/176671

    Article  Google Scholar 

  • Righelato R, Spracklen DV et al (2007) Carbon mitigation by biofuels or by saving and restoring forests? Science 317(5840):902. doi:10.1126/science.1141361

    Article  CAS  Google Scholar 

  • Rowland L, Da Costa AC, Galbraith DR et al (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528:119–122. doi:10.1038/nature15539

    CAS  Google Scholar 

  • Sala A, Tenhunen JD (1994) Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed. Tree Physiol 14:601–617. doi:10.1093/treephys/14.6.601

    Article  CAS  Google Scholar 

  • Serrano L, Peñuelas J (2005) Contribution of physiological and morphological adjustments to drought resistance in two Mediterranean tree species. Biol Plant 49:551–559. doi:10.1007/s10535-005-0049-y

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105

  • Sicard P, De Marco A, Dalstein-Richier L, Tagliaferro F, Renou C, Paoletti E (2016) An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in southern European forests. Sci Total Environ 541:729–741. doi:10.1016/j.scitotenv.2015.09.113

    Article  CAS  Google Scholar 

  • Skelton RP, West AG, Dawson TE (2015) Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc Natl Acad Sci USA 112:5744–5749. doi:10.1073/pnas.1503376112

    Article  CAS  Google Scholar 

  • Teixeira Filho J, Damesin C, Rambal S, Joffre R (1998) Retrieving leaf conductances from sap flows in a mixed Mediterranean woodland: a scaling exercise. Ann For Sci 55:173–190. doi:10.1051/forest:19980111

    Article  Google Scholar 

  • Tenhunen JD, Pearcy RW, Lange OL (1987) Diurnal variations in leaf conductance and gas exchange in natural environments. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress: functional analysis in Mediterranean ecosystems. Springer-Verlag, Berlin, pp 305–327

    Chapter  Google Scholar 

  • Tingey DT, Hogsett WE (1985) Water stress reduces ozone injury via a stomatal mechanism. Plant Physiol 77:944–947. doi:10.1104/pp.77.4.944

    Article  CAS  Google Scholar 

  • Tingey DT, Hogsett WE, Lee EH, Herstrom AA, Azevedo SH (1991) An evaluation of various alternative ambient ozone standards based on crop yield loss data. In: Berglund RL, Lawson DR, McKee DJ (eds) Tropospheric ozone and the environment. Air and Waste Management Association, Pittsburgh, pp 272–288

    Google Scholar 

  • Tognetti R, Cherubini P, Marchi S, Raschi A (2007) Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy. Tree Physiol 27:1741–1751

    Article  CAS  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

  • Yuan X, Calatayud V, Gao F, Fares S, Paoletti E, Tian Y, Feng Z (2016) Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Plant Cell Environ 39:2276–2287. doi:10.1111/pce.12798

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Alessandro Materassi and Gianni Fasano for designing and maintaining the ozone FACE; Moreno Lazzara for support during the field work; Marcello Vitale for providing the Q. ilex seedlings; Giulia Carriero for help during the biomass assessment; the Fondazione Cassa di Risparmio di Firenze (2013/7956), the LIFE15 ENV/IT/000183 project MOTTLES and Dr. Moura’s fellowship (FAPESP grant nos. 2014/13524-0 and 2014/23839-9) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Paoletti.

Additional information

Responsible editor: Yi-ping Chen

Electronic supplementary material

ESM 1

(DOCX 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshika, Y., Moura, B. & Paoletti, E. Ozone risk assessment in three oak species as affected by soil water availability. Environ Sci Pollut Res 25, 8125–8136 (2018). https://doi.org/10.1007/s11356-017-9786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9786-7

Keywords

Navigation