Skip to main content
Log in

Aquatic ecotoxicity of ashes from Brazilian savanna wildfires

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In a global scenario of climate change, several studies have predicted an increase in fires in different parts of the world. With the occurrence of rains following the fires in the Brazilian savanna (Cerrado biome), the compounds present in ashes may enter aquatic environments and cause adverse effects to these ecosystems. In this context, this study evaluated the potential toxicity of ashes from two areas of Cerrado and an area of pasture, through ecotoxicological bioassays and using three aquatic species from distinct trophic levels, which were exposed to different dilutions of ashes: the microcrustacean Ceriodaphnia dubia, the fish Danio rerio and the mollusc Biomphalaria glabrata. The ashes from the three sampled areas showed higher concentrations of some elements in relation to the soil samples (B, Ca, K, Mg, Mn, P, S, Si, Sr, Zn), but only a small quantity of these compounds was solubilised. Our data showed that all ash samples caused acute toxicity to C. dubia (48hs-LC50 = 13.4 g L−1; 48hs-LC50 = 6.33 g L−1; 48hs-LC50 = 9.73 g L−1 respectively for transition area, pasture, typical cerrado areas), while in relation to D. rerio and B. glabrata, no acute toxicity was observed when they were exposed to ashes from native Cerrado vegetation and pasture areas. Ashes from a transition area showed toxicity for D. rerio (48hs-LC50 = 25.0 g L−1); possibly, this was due to the combination of multiple preponderant inorganic elements of ashes with other organic compounds not analysed, such as polycyclic aromatic hydrocarbons (PAHs). In summary, these results suggest that wildfires may pose risks to zooplankton communities and emphasize the need for more studies to better understand the complexity of the ecological effects of fire on aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ABNT (Associação Brasileira de Normas Técnicas) (2004) Ecotoxicologia aquática: toxicidade aguda-método de ensaio com peixes. NBR 15088. Rio de Janeiro: ABNT, 19 p

  • ABNT (Associação Brasileira de Normas Técnicas) (2005) Ecotoxicologia aquática – Toxicidade crônica – Método de ensaio com Ceriodaphnia spp. (Crustacea, Cladocera). NBR 13373. Rio de Janeiro: ABNT 12p

  • Adriano DC (2001) Trace metals in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Atkinson CA, Jolley DF, Simpson SL (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69(9):1428–1437

    Article  CAS  Google Scholar 

  • Baird M, Zabowski D, Everett RL (1999) Wildfire effects on carbon and nitrogen in inland coniferous forests. Plant Soil 209:233–243

    Article  CAS  Google Scholar 

  • Bandow C, Weltje L (2012) Development of an embryotoxicity test with the pond snail Lymnaea stagnalis using the model substance tributyltin and common solvents. Sci Total Environ 435-436:90–95

    Article  CAS  Google Scholar 

  • Basta NT, Pantone DJ, Tabatabai MA (1993) Path analysis of heavy metal adsorption by soil. Agron J 85(5):1054–1057

    Article  CAS  Google Scholar 

  • Bergendahl J (2005) Batch leaching test: colloid release and PAH leachability. Soil Sediment Contam 14:527–543

    Article  CAS  Google Scholar 

  • Bernardi JVE, Lacerda LD, Dórea JG, Landim PMB, Gomes JPO, Almeida R et al (2012) Aplicação da análise das componentes principais na ordenação dos parâmetros físico-químicos no alto Rio Madeira e afluentes, Amazônia Ocidental. Geochim Bras 23(1):079–090

    Google Scholar 

  • Bin Abas MR, Simoneit BR, Elias V, Cabral JA, Cardoso JN (1995) Composition of higher molecular weight organic matter in smoke aerosol from biomass combustion in Amazonia. Chemosphere 30(5):995–1015

    Article  Google Scholar 

  • Bitner K, Gallaher B, Mullen K (2001) Review of wildfire effects on chemical water quality. In: Hinojosa H (ed) Review of wildfire effects on chemical water quality. Los Alamos National Laboratory, Los Alamos

    Chapter  Google Scholar 

  • Campos I, Abrantes N, Vidal T, Bastos AC, Gonçalves F, Keizer JJ (2012) Assessment of the toxicity of ash-loaded runoff from a recently burnt eucalypt plantation. Eur J For Res 131:1889–1903

    Article  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143(1):1–10

    Article  Google Scholar 

  • Chapman PM (2000) Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environ Toxicol Chem 19:3–13

    CAS  Google Scholar 

  • Charette T, Prepas EE (2003) Wildfire impacts on phytoplankton communities of three small lakes on the Boreal Plain, Alberta, Canada: a paleolimnological study. Can J Fish Aquat Sci 60:584–593

    Article  Google Scholar 

  • Chen J, Henderson G, Grimm CC, Lloyd SW, Laine RA (1998) Termites fumigate their nests with naphthalene. Nature 392(6676):558

  • Cochrane MA (2009) Tropical fire ecology: climate change, land use and ecosystem dynamics. Praxis Publishing, Chichester

    Book  Google Scholar 

  • Cooney JD (1995) Fresh water tests. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects. Environmental Fate and Risk Assessment. Taylor & Francis, Washington, D. C, pp 71–102

    Google Scholar 

  • Costa MR, Calvão AR, Aranha J (2014) Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Appl Geochem 44:93–102

    Article  CAS  Google Scholar 

  • Dahm CN, Candelaria-Ley RI, Reale CS, Reale JK, Van Horn DJ (2015) Extreme water quality degradation following a catastrophic forest fire. Freshw Biol 60(12):2584–2599. doi:10.1111/fwb.12548

    Article  CAS  Google Scholar 

  • Earl SR, Blinn DW (2003) Effects of wildfire ash on water chemistry and biota in South-western USA streams. Freshw Biol 48:1015–1030

    Article  CAS  Google Scholar 

  • EMBRAPA (1997) Manual of soil analysis methods, 2nd edn. National Research Center of Soils, Rio de Janeiro

    Google Scholar 

  • Emmerich WE (1998) Estimating prescribed burn impacts on surface runoff and water quality in southeastern Arizona. In: Proc., Rangeland Management and Water Resources, Potts DF (Ed) AWRA, pp, 149–158

  • EPA Environmental Protection Agency, U.S. (1996) Fish Acute Toxicity

  • EPS Environmental Protection Series - 1/RM/21 (2007) Biological test method: test of reproduction and survival using the Cladoceran Ceriodaphnia dubia method development and applications section, Environmental Science and Technology Centre, Environment Canada (2nd edition)

  • Estevam EC, Nakano E, Kawano T, Pereira CAB, Amancio FF, Melo AMMA (2006) Dominant lethal effects of 2,4-din Biomphalaria glabrata. Mutat Res 611:83–88

    Article  CAS  Google Scholar 

  • Freitas EC, Rocha O (2011) Acute and chronic effects of sodium and potassium on the tropical freshwater cladoceran Pseudosida ramosa. Ecotoxicology 20:88–96

    Article  CAS  Google Scholar 

  • Gaudino S, Galas C, Belli M, Barbizzi S, Zorzi PD, Jacimovic R, Jeran Z, Pati A, Sansone U (2007) The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results. Accred Qual Assur 12:84–93

    Article  CAS  Google Scholar 

  • Grazeffe VS, Tallarico LF, Pinheiro AS, Kawano T, Suzuki MF, Okazaki K, Pereira CAB, Nakano E (2008) Establishment of the comet assay in the fresh water snail Biomphalaria glabrata (Say,1818). Mutat Res 654:58–63

    Article  CAS  Google Scholar 

  • Geurts JJM, Sarneel JM, Willers BJC, Roelofs JGM, Verhoeven JTA, Lamers LPM (2009) Interacting effects of sulphate pollution, sulphidetoxicity and eutrophication on vegetation development in fens: a mesocosm experiment. Environ Pollut 157:2072–2081

    Article  CAS  Google Scholar 

  • Gresswell RE (1999) Fire and aquatic ecosystems in forested biomes of North America. Trans Am Fish Soc 128:193–221

    Article  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • Haridasan M (1982) Aluminum accumulation by some Cerrado native species in Central Brazil. Plant Soil 65:265–273

    Article  CAS  Google Scholar 

  • IBAMA (2011) Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. - PREVFOGO. Available in http://www.ibama.gov.br/prevfogo

  • Ignatavièius G, Sakalauskiene G, Oskinis V (2006) Influence of land fires on increase of heavy metal concentrations in river waters of Lithuania. J Environ Eng Landscape Manag XIV(1):46–51

    Google Scholar 

  • INPE (2012) Instituto Nacional de Pesquisas Espaciais. Sistema de Monitoramento de Queimadas e Incêndios Florestais por Satélite em Tempo Quase-Real. Available in http://www.inpe.br/queimadas. Accessed in feb. 15th, 2013

  • ISO, Soil quality, Extraction of Trace Elements Soluble in Aqua Regia, ISO 11466 (1995)

  • Khanna PK, Raison RJ, Falkiner RA (1994) Chemical properties of ash derived from eucalyptus litter and its effects on forest soils. For Ecol Manag 66(1):107–125

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. doi:10.1111/j.1523-1739.2005.00702.x

    Article  Google Scholar 

  • Klink CA, Moreira AG (2002) Past and current human occupation and land-use. In: Oliveira PS, Marquis RJ (eds) The Cerrado of Brazil. Ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 69–88

    Google Scholar 

  • Lapa N, Barbosa R, Morais J, Mendes B, Méhu J, Oliveira JS (2002) Ecotoxicological assessment of leachates from MSWI bottom ashes. Waste Manag 22(6):583–593

    Article  CAS  Google Scholar 

  • Lapola DM et al (2014) Pervasive transition of the Brazilian land-use system. Nat Clim Chang 4:27–35

    Article  Google Scholar 

  • Lavorel S, Flannigan MD, Lambin EF, Scholes MC (2007) Vulnerability of land systems to fire: interactions among humans, climate, the atmosphere, and ecosystems. Mitig Adapt Strateg Glob Change 12:33–53

    Article  Google Scholar 

  • Machado CMD, Cardoso AA, Alen AG (2008) Atmospheric emission of reactive nitrogen during biofuel ethanol production. Environ Sci Technol 42:381–385

    Article  CAS  Google Scholar 

  • Malvar MC, Martins MA, Nunes JP, Robichaud PR, Keizer JJ (2013) Assessing the role of pre-fire ground preparation operations and soil water repellency in post-fire runoff and inter-rill erosion by repeated rainfall simulation experiments in Portuguese eucalypt plantations. Catena 108:69–83

    Article  Google Scholar 

  • McEachern P, Prepas EE, Gibson JJ, Dinsmore WP (2000) Forest fire induced impacts on phosphorous, nitrogen, and chlorophyll a concentrations in boreal subarctic lakes of northern Alberta. Can J Fish Aquatic Sci 57:73–81

    Article  CAS  Google Scholar 

  • McGlathery KJ, Sundback K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18

    Article  CAS  Google Scholar 

  • Minshall GW, Robinson CT, Lawrence DE, Andrews DA, Brock JT (2001a) Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10-year period following disturbance by wildfire. Int J Wildland Fire 10:201–213

    Article  Google Scholar 

  • Minshall GW, Brock JT, Andrews DA, Robinson CT (2001b) Water quality, substratum and biotic responses of five central Idaho (USA) streams during the first year following the Mortar Creek fire. Int J Wildland Fire 10:185–199

    Article  Google Scholar 

  • Miranda HS, Sato MN (2005) Efeitos do fogo na vegetação lenhosa do Cerrado. In: Scariot A, Sousa-Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. Brasília, Ministério do Meio Ambiente, pp 93–105

    Google Scholar 

  • Miranda HS, Bustamante MMC, Miranda AC (2002) The fire factor. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 51–68

    Google Scholar 

  • Mount DR, Gulley DD, Hockett JR, Garrison TD, Evans JM (1997) Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows). Environ Toxicol Chem 16(10):2009–2019. doi:10.1002/etc.5620161005

    Article  CAS  Google Scholar 

  • Mowat FS, Bundy KJ (2001) Correlation of field-measured toxicity with chemical concentration and pollutant availability. Environ Int 27:479–489

    Article  CAS  Google Scholar 

  • Münzinger A (1987) Biomphalaria glabrata (Say), a suitable organism for a biotest. Environ Technol Lett 8(1):307–317

    Google Scholar 

  • Newcombe CP, MacDonald DD (1991) Effects of suspended sediments on aquatic ecosystems. N Am J Fish Manag 11:72–82

    Article  Google Scholar 

  • OECD (2004) Guideline for testing of chemicals. OECD 202. Daphnia sp., acute immobilization test. Organization for Economic Cooperation and Development, Paris

    Book  Google Scholar 

  • OECD (2013) OECD guidelines for the testing of chemicals: fish embryo acute toxicity (FET) test: test n. 236: acute toxicity for fish. Organization for Economic Cooperation and Development, Paris

    Book  Google Scholar 

  • Oliveira-Filho EC, Lopes RM, Paumgartten FJR (2004) Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56(4):369–374

    Article  Google Scholar 

  • Oliveira-Filho EC, Geraldino BR, Grisolia CK, Paumgartten FJR (2005) Acute toxicity of endosulfan, nonylphenol ethoxylate and ethanol to different life stages of the freshwater snail Biomphalaria tenagophila (Orbigny, 1835). Bull Environ Contam Toxicol 75(6):1185–1190

    Article  CAS  Google Scholar 

  • Oliveira-Filho EC, Nakano E & Tallarico LDF (2017) Bioassays with freshwater snails Biomphalaria sp.: from control of hosts in public health to alternative tools in ecotoxicology. Invertebr Reprod Dev 1-9. DOI: 10.1080/07924259.2016.1276484

  • Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268

    Article  CAS  Google Scholar 

  • Prats SA, Martins MAS, Malvar MC, Ben-Hur M, Keizer JJ (2014) Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion. Sci Total Environ 468:464–474

    Article  Google Scholar 

  • Pereira P, Úbeda X (2010) Spatial distribution of heavy metals released from ashes after a wildfire. J Environ Eng Landsc Manag 18:13–22

    Article  Google Scholar 

  • Pereira P, Úbeda X, Martin D, Mataix-Solera J, Guerrero C (2011) Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Environ Res 111(2):237–247

    Article  CAS  Google Scholar 

  • Pereira P, Úbeda X, Martin DA (2012) Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 191:105–114

    Article  CAS  Google Scholar 

  • Persson Y, Hemström K, Öberg L, Tysklind M, Enell A (2008) Use of a column leaching test to study the mobility of chlorinated HOCs from a contaminated soil and the distribution of compounds between soluble and colloid phases. Chemosphere 71:1035–1042

    Article  CAS  Google Scholar 

  • Pilliod DS, Bury RB, Hyde EJ, Pearl CA, Corn PS (2003) Fire and amphibians in North America. For Ecol Manag 178:163–181

    Article  Google Scholar 

  • Pivello VR (2006) Fire management for biological conservation in the Brazilian Cerrado. In: Mistry J, Berardi A (eds) Savanas and dry forests—linking people with nature. Ashgate, Hants, pp 129–154

    Google Scholar 

  • Pivello VR, Coutinho L (1992) Transfer of macro-nutrients to the atmosphere during experimental burnings in an open Cerrado (Brazilian savanna). J Trop Ecol 8:487–497

    Article  Google Scholar 

  • Plumlee, GS, Martin DA, Hoefen T, Kokaly R, Hageman P, Eckberg A, Meeker GP, Adams M. Anthony M, Lamothe PJ (2007) Preliminary analytical results for ash and burned soils from the October 2007 Southern California wildfires. United States Geological Survey Open File Report 2007–1407

  • R PROGRAM (2014) The R project for statistical computing v 2.13.2. http://www.r-project.org/. Accessed 10 October 2014

  • Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF. Cerrado: Ecologia e Flora. Embrapa Cerrados – Brasília, DF: Embrapa Informação Tecnológica. p. 151-212

  • Richardson M (1993) Ecotoxicology monitoring. VCH, Weinheim

    Google Scholar 

  • Rosa IC, Costa R, Gonçalves F, Pereira JL (2014) Bioremediation of metal-rich effluents: could the invasive bivalve Corbicula fluminea work as a biofilter? J Environ Qual 43(5):1536–1545

    Article  CAS  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RB (2004) Invertebrate zoology, a functional evolutionary approach, 7th ed. Brooks Cole Thomson, Belmont, 963 pp

    Google Scholar 

  • Salih FM (2011) Microalgae tolerance to high concentrations of carbon dioxide: a review journal of environmental protection 2: 648–654.

  • Salgado-Laboriau ML&Vicentini KRFC (1994) Fire in the Cerrado 32,000 years ago. Current research in the pleistocene 11:85–87

    Google Scholar 

  • Santín C, Doerr SH, Chafer C (2015) Quantity, composition and water contamination potential of ash produced under different wildfire severities. Environ Res 142:297–308

    Article  Google Scholar 

  • Schäfer RB, Hearn L, Kefford BJ, Mueller JF, Nugegoda D (2010) Using silicone passive samplers to detect polycyclic aromatic hydrocarbons from wildfires in streams and potential acute effects for invertebrate communities. Water Res 22:4590–4600

    Article  Google Scholar 

  • Shakesby RA (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci Rev 105:71–100

    Article  Google Scholar 

  • Shakesby RA, Doerr SH (2006) Wildfire as a hydrological and geomorphological agent. Earth-Sci Rev 74:269–307

    Article  Google Scholar 

  • Silva V, Pereira JL, Campos I, Keizer JJ, Gonçalves F, Abrantes N (2015) Toxicity assessment of aqueous extracts of ash from forest fires. Catena 135:401–408

    Article  CAS  Google Scholar 

  • Silva V, Abrantes N, Costa R, Keizer JJ, Gonçalves F, Pereira JL (2016) Effects of ash-laden post-fire runoff on the freshwater clam Corbicula fluminea. Ecol Eng 90:180–189

    Article  Google Scholar 

  • Simplício NDCS, Muniz DHDF, Rocha FRM, Martins DC, Dias ZMB, Farias BPDC, Oliveira-Filho EC (2016) Comparative analysis between ecotoxicity of nitrogen-, phosphorus-, and potassium-based fertilizers and their active ingredients. Toxics 5(1):2–13

    Article  Google Scholar 

  • Smith HG, Sheridan GJ, Lane PNJ, Nyman P, Haydon S (2011) Wildfire effects on water quality in forest catchments: a review with implications for water supply. J Hydrol 396:170–192

    Article  CAS  Google Scholar 

  • Smolders R, Bervoets L, Wepener V, Blust R (2003) A conceptual framework for using mussels as biomonitors in whole effluent toxicity. Hum Ecol Risk Asses 9:741–760

    Article  CAS  Google Scholar 

  • Spencer CN, Gabel KO, Hauer FR (2003) Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA. For Ecol Manag 178:141–153

    Article  Google Scholar 

  • Stiernström S, Hemström K, Wik O, Carlsson G, Bengtsson BE, Breitholtz M (2011) An ecotoxicological approach for hazard identification of energy ash. Waste Manag 31:342–352

    Article  Google Scholar 

  • Stiernström S, Linde M, Hemström K, Wik O, Ytreberg E, Bengtsson BE, Breitholtz M (2013) Improved understanding of key elements governing the toxicity of energy ash eluates. Waste Manag 33(4):842–849

    Article  Google Scholar 

  • Tallarico LF, Borrely SI, Hamada N, Grazeffe VS, Ohlweiler FP, Okazaki K, Granatelli AT, Pereira IW, Pereira CAB, Nakano E (2014) Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples. Ecotoxicol Environ Saf 110:208–215

    Article  CAS  Google Scholar 

  • Tsidiris V, Petala M, Samaras P, Hadjispyrou S, Sakellaropoulos G, Kungolos A (2006) Interactive toxic effects of heavy metals and humic acids on Vibrio fischeri. Ecotoxicol Environ Saf 63:158–167

    Article  Google Scholar 

  • Úbeda X, Pereira P, Outeiro L, Martin DA (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degrad Dev 20:589–608

    Article  Google Scholar 

  • Versteeg DJ, Stalmans M, Dyer SD, Janssen C (1997) Ceriodaphnia and Daphnia: a comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere 34(4):869–892

    Article  CAS  Google Scholar 

  • Vila-Escalé M, Vegas-Vilarrúbia T, Prat N (2007) Release of polycyclic aromatic compounds into a Mediterranean creek (Catalonia, NE Spain) after a forest fire. Water Res 41:2171–2179

    Article  Google Scholar 

  • Vijayavel K, Balasubramanian MP (2007) Interaction of potash and decis in the ecophysiology of a freshwater fish Oreochromis mossambicus. Ecotoxicol Environ Saf 66:154–158

    Article  CAS  Google Scholar 

  • Whitney JE, Gido KB, Pilger TJ, Propst DL, Turner TF (2015) Consecutive wildfires affect stream biota in cold and warm water dryland river networks. Freshw Sci 34:1510–1526

    Article  Google Scholar 

  • Wilcke W, Amelung W, Krauss M, Martius C, Bandeira A, Garcia M (2003) Polycyclic aromatic hydrocarbon (PAH) patterns in climatically different ecological zones of Brazil. Org Geochem 34(10):1405–1417

    Article  CAS  Google Scholar 

  • Wilcke W, Krauss M, Lilienfein J, Amelung W (2004) Polycyclic aromatic hydrocarbon storage in a typical Cerrado of the Brazilian savanna. J Environ Qual 33(3):946–955

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian National Council of Scientific and Technological Development (CNPq), under Research Grant No. 478637/2012-8. Águas Emendadas Ecological Station (ESEC-AE) and Embrapa Cerrados are acknowledged for permission to perform this study in their areas and facilities. We are grateful to Embrapa Cerrados for collaboration and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo C. Oliveira-Filho.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, D.Q., Passos, C.J.S., Muniz, D.H.F. et al. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires. Environ Sci Pollut Res 24, 19671–19682 (2017). https://doi.org/10.1007/s11356-017-9578-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9578-0

Keywords

Navigation