Skip to main content

Advertisement

Log in

Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005–2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha−1. The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. CAB International, Wallingford

    Google Scholar 

  • Black W (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Boonpragob K (1998) Estimating greenhouse gas emission and sequestration from land use change and forestry in Thailand. In: Moya TB (ed) Greenhouse gas emissions, aerosols, land use and cover changes in Southeast Asia, vol. Southeast Asia Regional Committee, Bangkok

    Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Methods of soil analysis: part 2. Chemical and microbiological properties. In: Page AL, R.H. M, Keeney DR (eds) Nitrogen-total. American Society of Agronomy and Soil Science Society of America, Madison, pp 595–624

    Google Scholar 

  • Brown S, Lugo AE (1982) The storage and production of organic-matter in tropical forests and their role in the global carbon-cycle. Biotropica 14:161–187

    Article  Google Scholar 

  • Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Sankaran M, Naeem S (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310(5750):1029–1031. doi:10.1126/science.1117682

    Article  CAS  Google Scholar 

  • Chan OC, Yang XD, Fu Y, Feng ZL, Sha LQ, Casper P, Zou XM (2006) 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol Ecol 58(2):247–259. doi:10.1111/j.1574-6941.2006.00156.x

    Article  CAS  Google Scholar 

  • D'Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and adaptation to climate change: insights from long-term silviculture experiments. For Ecol Manag 262(5):803–816. doi:10.1016/j.foreco.2011.05.014

    Article  Google Scholar 

  • Day M, Baldauf C, Rutishauser E, Sunderland TCH (2014) Relationships between tree species diversity and above-ground biomass in Central African rainforests: Implications for REDD. Environ Consr 41:64–72

  • Deng X, Tang J (2010) Dataset of Chinese ecosystem Position observation and research (Volume of forest ecosystem, Xishuangbanna, Yunnan 1998–2006). China Agriculture Press, Beijing, p 238

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2(4) doi:Artn 04502310.1088/1748-9326/2/4/045023

  • Grimm U, Fassbender HW (1981) Cicilos bioquimicos en un ecosistema de los Andes occidentales de venezula. I, inventrio de las reserve organicas y minerals (N, P, K, CA. Mg, Mn, Fe, Al, Na). Turrialba 31:27–37

    CAS  Google Scholar 

  • Grubb PJ, Edwards P (1982) Studies on ineral cycling in New Guinea. III. The distribution of the mineral elements in above ground materials. Ecology 70:623–648

    Article  CAS  Google Scholar 

  • Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80:1892–1907

    Google Scholar 

  • Jucker T, Sanchez AC, Lindsell JA, Allen HD, Amable GS, Coomes DA (2016) Drivers of aboveground wood production in a lowland tropical forest of West Africa: teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging. Ecol Evol 6(12):4004–4017. doi:10.1002/ece3.2175

    Article  Google Scholar 

  • Krishan G, Srivastav SK, Kumar S, Saha SK, Dadhwal VK (2009) Quantifying the underestimation of soil organic carbon by the Walkley and Black technique—examples from Himalayan and central Indian soils. Curr Sci India 96(8):1133–1136

    CAS  Google Scholar 

  • Krzic M, Fortin MC, Bomke AA (2000) Short-term responses of soil physical properties to corn tillage-planting systems in a humid maritime climate. Soil Tillage Res 54:171–178

    Article  Google Scholar 

  • Liu WY, Fox JED, Xu ZF (2002) Biomass and nutrient accumulation in montane evergreen broad-leaved forest (Lithocarpus xylocarpus type) in Ailao Mountains, SW China. For Ecol Manag 158(1–3):223–235. doi:10.1016/S0378-1127(00)00716-7

    Article  Google Scholar 

  • Liu YY, van Dijk AIJM, de Jeu RAM, Canadell JG, McCabe MF, Evans JP, Wang GJ (2015) Recent reversal in loss of global terrestrial biomass. Nat Clim Chang 5(5):470–474. doi:10.1038/Nclimate2581

    Article  Google Scholar 

  • Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215. doi:10.1038/nature07276

    Article  CAS  Google Scholar 

  • Ma W, Liu WY, Li XJ (2009) Species composition and life forms of epiphytic bryophytes in old growth and secondary forest in Mt. Ailao, SW China. Crypto Bryo 30(4):477–500

    Google Scholar 

  • Magalhães TM, Seifert T (2015) Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood: measurement uncertainty. Carb Bal Mgt 10(9). doi:10.1186/s13021-015-0019-4

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell and Environment 22:715–740

    Article  CAS  Google Scholar 

  • Mensah S, Veldtman R, du Toit B, Kakai RG, Seifert T (2016) Aboveground biomass and carbon in a South African mistbelt forest and the relationships with tree species diversity and forest structures. Forests 7(4) doi:ARTN 7910.3390/f7040079

  • Mohanraj R, Saravanan J, Dhanakumar S (2011) Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. Iforest-Biogeosciences and Forestry 4:61–65

  • Murphy PG, Lugo AE (1986) Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 18:89–96

    Article  Google Scholar 

  • Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen, T., Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang XL (2007) Climate change 2007: mitigation, contribution of III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.. In: B. Metz D, O.R., Bosch, P.R., Dave, R., Meyer, L.A., (ed) Forestry, vol., Cambridge, New York., pp 541–584

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259(5):857–866. doi:10.1016/j.foreco.2009.12.009

    Article  Google Scholar 

  • Nizami SM (2012) The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. J For Res (Harbin) 23:377–384

  • Ogawa HY, Ogino K, Kira T (1965) Comparative ecological studies on three main types of forest vegetation in Thailand II plant biomass. Nature and Life in South East Asia vol 4:49–80

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus, chemical and microbiological properties. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society of Agronomy and Soil Science Society of America, Winconsin, pp 403–430

    Google Scholar 

  • Otieno D, Li YL, Ou YX, Cheng J, Liu SZ, Tang XL, Zhang QM, Jung EY, Zhang DQ, Tenhunen J (2014) Stand characteristics and water use at two elevations in a sub-tropical evergreen forest in southern China. Agric For Meteorol 194:155–166. doi:10.1016/j.agrformet.2014.04.002

    Article  Google Scholar 

  • Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  Google Scholar 

  • Philip MS (1994) Measuring trees and forests. CAB INternational Press, Wallingford

    Google Scholar 

  • Powers M, Kolka R, Palik B, McDonald R, Jurgensen M (2011) Long-term management impacts on carbon storage in Lake States forests. For Ecol Manag 262(3):424–431. doi:10.1016/j.foreco.2011.04.008

    Article  Google Scholar 

  • Qui XZ, Xie, X.C., Liu, W.Y. (1998) Studies on forest ecosystem in Ailao Mountains, Yunnan China. In: Press YSaT (ed), vol., Kunming, China

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. P Natl Acad Sci USA 108(24):9899–9904. doi:10.1073/pnas.1019576108

    Article  CAS  Google Scholar 

  • Sagar R, Raghubanshi AS, Singh JS (2008) Comparison of community composition and species diversity of understorey and overstorey tree species in a dry tropical forest of northern India. J Environ Manag 88(4):1037–1046. doi:10.1016/j.jenvman.2007.05.013

    Article  CAS  Google Scholar 

  • Schaefer DA, Feng WT, Zou XM (2009) Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biol Biochem 41(5):1000–1007. doi:10.1016/j.soilbio.2008.11.015

    Article  CAS  Google Scholar 

  • Sierra CA, del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For Ecol Manag 243(2–3):299–309. doi:10.1016/j.foreco.2007.03.026

    Article  Google Scholar 

  • Slik JWF, Paoli G, McGuire K, Amaral I, Barroso J, Bastian M, Blanc L, Bongers F, Boundja P, Clark C, Collins M, Dauby G, Ding Y, Doucet JL, Eler E, Ferreira L, Forshed O, Fredriksson G, Gillet JF, Harris D, Leal M, Laumonier Y, Malhi Y, Mansor A, Martin E, Miyamoto K, Araujo-Murakami A, Nagamasu H, Nilus R, Nurtjahya E, Oliveira A, Onrizal O, Parada-Gutierrez A, Permana A, Poorter L, Poulsen J, Ramirez-Angulo H, Reitsma J, Rovero F, Rozak A, Sheil D, Silva-Espejo J, Silveira M, Spironelo W, ter Steege H, Stevart T, Navarro-Aguilar GE, Sunderland T, Suzuki E, Tang JW, Theilade I, van der Heijden G, van Valkenburg J, Van Do T, Vilanova E, Vos V, Wich S, Woll H, Yoneda T, Zang RG, Zhang MG, Zweifel N (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22(12):1261–1271. doi:10.1111/geb.12092

    Article  Google Scholar 

  • Tan ZH, Zhang YP, Yu GR, Sha LQ, Tang JW, Deng XB, Song QH (2010) Carbon balance of a primary tropical seasonal rain forest. J Geophys Res-Atmos 115 doi:Artn D00h2610.1029/2009jd012913

  • Tan ZH, Zhang YP, Schaefer D, Yu GR, Liang NS, Song QH (2011) An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos Environ 45(8):1548–1554. doi:10.1016/j.atmosenv.2010.12.041

    Article  CAS  Google Scholar 

  • Tanner EVJ (1985) Jamaican montane forests—nutrient capital and cost of growth. Ecology 73:553–568

    Article  Google Scholar 

  • Temesgen H, Affleck D, Poudel K, Gray A, Sessions J (2015) A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J Forest Res 30(4):326–335. doi:10.1080/02827581.2015.1012114

    Google Scholar 

  • Woodall CW, Heath LS, Smith JE (2008) National inventories of down and dead woody material forest carbon stocks in the United States: challenges and opportunities. For Ecol Manag 256:221–228

    Article  Google Scholar 

  • Wu CY (1987) The vegetation of Yunnan. Science Press, Beijing

    Google Scholar 

  • Zhao M, Zhou GS (2005) Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. For Ecol Manag 207:295–313

    Article  Google Scholar 

  • Zhou GY, Liu SG, Li Z, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006) Old-growth forests can accumulate carbon in soils. Science 314(5804):1417–1417. doi:10.1126/science.1130168

    Article  CAS  Google Scholar 

  • Zhou L, Dai LM, Wang SX, Huang XT, Wang XC, Qi L, Wang QW, Li GW, Wei YW, Shao GF (2011) Changes in carbon density for three old-growth forests on Changbai Mountain, Northeast China: 1981-2010. Ann Forest Sci 68(5):953–958. doi:10.1007/s13595-011-0101-3

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (U1202234, 31290220), the Yunnan Natural Science Foundation of Yunnan Province, China (2011FA025), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050601, XDA05050206) and the CAS 135 project (XTBG-F01), Ailaoshan Station for Subtropical Forest Ecosystem Research, Ailaoshan National Nature Reserve Administration at Jingdong, and Central Analysis Lab of XTBG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Moazzam Nizami.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

Table 1s

Mean Tree density (No. of tree ha−1), Mean DBH (cm) and Mean Height (m) of the tree species of Primary Subtropical Broad-leaved Forest in Ailaoshan Mountain Nature Reserve (DOC 110 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizami, S.M., Yiping, Z., Zheng, Z. et al. Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China. Environ Sci Pollut Res 24, 8137–8146 (2017). https://doi.org/10.1007/s11356-017-8506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8506-7

Keywords

Navigation