Skip to main content

Carbon Stock Assessment in Sub-humid Tropical Forest Stands of the Eastern Himalayan Foothills

  • Chapter
  • First Online:
Conservation, Management and Monitoring of Forest Resources in India

Abstract

Assessment of carbon storage potential of a forest is difficult due to a lack of information on biomass partitioning and allocation in different species. For most of the species only above-ground biomass potential is known, but to have a picture of carbon storage potential of species, the below-ground biomass is equally important. With this in view a study was conducted at Jaldapara National Park located in the foothills of Eastern Himalayas to analyze the tree dominance, biomass production, and biomass carbon stocks of five forest stands of Tectona grandis dominant stands (TGDS), Shorea robusta dominant stands (SRDS), Michelia champaca dominant stands (MCDS), Lagerstroemia speciosa dominant stands, and miscellaneous stands (MS). Trees contributed 87.3–96.5% of the total biomass in the studied stand and the rest by shrubs, herbs, and litters, while AGB contributed 70.5–84.7%. Stratified random nested quadrate sampling method was adopted in this study. The ecosystem carbon stock varied significantly among the stands in the range of 145.8–454.3 Mg C ha−1. Consequent of significantly higher species richness, population, and basal area, the MS was estimated with significantly higher vegetation biomass and soil organic carbon stock and thus significantly also had higher ecosystem carbon stock than the species dominant stands. The MS was quantified with 2.64–3.12 times higher ecosystem carbon stock than the species dominant stands. Tectona grandis, Shorea robusta, Michelia champaca, and Lagerstroemia speciosa are popular timber species with high commercial demand. Forests are now known as net emitter and need sustained conservation efforts. The forests of the region can be relieved from commercial pressure through developing plantations of these high-value timber species involving local population. It is advocated to manage these plantations as semi-natural forest with heterogeneous regional vegetation allowing minimum or no disturbances that can fulfill commercial, social, and ecological needs. Success of such plantation programs needs policy support with adequate compensation and incentives. These plantations in non-forested landscapes will supplement the forest in terms of conserving and enhancing the terrestrial carbon sink of the region. However, systematic and holistic research is required to understand the regional patterns, fluxes, magnitude, and driving mechanisms of terrestrial carbon sinks and sources for efficient policy support and management decisions. Meanwhile, with the regional tree species identified, silvicultural actions and policy framework can be formulated to initiate carbon farming with the identified tree species in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Ahmad, S. M. Nizami. Carbon stocks of different land uses in the Kumrat Valley, Hindu Kush Region of Pakistan. Journal of Forestry Research 26 (2014) 57-64.

    Article  CAS  Google Scholar 

  • A. Ali, W. J. Ma, X. D. Yang, B. W. Sun, Q. R. Shi, M. Xu. Biomass and carbon stocks in Schima superba dominated subtropical forests of eastern china. Journal of Forest Science 60 (2014) 198-207.

    Article  Google Scholar 

  • A. C. da Gama-Rodrigues, N. F. de Barros, N. B. Comerford. Biomass and nutrient cycling in pure and mixed stands of native tree species in South-eastern Bahia, Brazil. R. Bras. Ci. Solo 31 (2007) 287-298.

    Article  Google Scholar 

  • A. Chhabra, V. K. Dadhwal. Assessment of major pools and fluxes of carbon in Indian forests. Climate Change 64 (2004) 341-360.

    Article  CAS  Google Scholar 

  • A. K. Yadava. Biomass production and carbon sequestration in different agroforestry systems in Tarai region of Central Himalaya. Indian Forester 136 (2010) 234-244.

    Google Scholar 

  • A. Karthick, L. A. Pragasan. Stand structure and above-ground biomass of two tree plantations at Bharathiar University, Coimbatore. Indian Forester 140 (2014) 29-33.

    Google Scholar 

  • A. P. Whitmore, G. J. D. Kirk, B. G. Rawlins. Technologies for increasing carbon storage in soil to mitigate climate change. Soil Use Management 31 (2015) 62-71.

    Article  Google Scholar 

  • B. Berg, M. Davey, A. De Marco, B. Emmett, M. Faituri, S. Hobbie, M. B. Johansson, C. Liu, C. McClaugherty, L. Norell, F. Rutigliano, L. Vesterdal, A. De Virzo Santo. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100 (2010) 57-73.

    Article  CAS  Google Scholar 

  • B. Minasny, B. P. Malone, A. B. McBratney, D. A. Angers, D. Arrouays, A. Chambers, et al. Soil carbon 4 per mille. Geoderma 292 (2017) 59-86.

    Article  Google Scholar 

  • B. S. Rana, R. P. Singh. Plant biomass and productivity estimates for central Himalayan mixed Banj oak (Quercus leucotrichophora A. Camus)-chir pine (Pinus roxburghii). Indian Forester 116 (1990) 220-226.

    Google Scholar 

  • B. Tamang, N. A. Pala, G. Shukla, M. Rashid, M. M. Rather, J. A. Bhat, T. H. Masoodi, S. Chakravarty. Trees outside forest (TOFs) aids in mitigating global climatic change through carbon sequestration: Example from academic institutional landscapes. Acta Ecologica Sinica 2021a doi:https://doi.org/10.1016/j.chnaes.2021.06.007

  • C. A. Dicus, T. J. Dean. In: Proceedings of the ninth biennial southern silvicultural research conference; 1997 February 25-27; eds. T. A. Waldrop, S. C. Clemson. General Technical Report, SRS-20. U. S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC. 1997. Pp. 564-568 (1998).

    Google Scholar 

  • C. Aponte, L. V. García, T. Maranon. Tree Species Effect on Litter Decomposition and Nutrient Release in Mediterranean Oak Forests Changes Over Time. Ecosystem (2012) doi:https://doi.org/10.1007/s10021-012-9577-4.

  • C. E. Ashton, P. J. Hogarth, R. Ormond. Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular, Malaysia. Hydrobiology 413 (1999) 77-88.

    Article  Google Scholar 

  • C. M. Sharma, N. P. Baduni, S. Gairola, S. K. Ghildiyal, S. Suyal. Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. Forest Ecology Management 260 (2010) 2170-2179.

    Article  Google Scholar 

  • D. A. Fornara, D. Tilman. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology 96 (2008) 314-322.

    Article  CAS  Google Scholar 

  • D. H. Knight. A distance method for constructing forest profile diagrams and obtaining structural data. Tropical Ecology 4 (1963) 89-94.

    Google Scholar 

  • D. Mohandass, A. C. Hughes, B. Mackay, P. Davidar, T. Chhabra. Floristic species composition and structure of mid-elevation tropical montane evergreen forests (Sholas) of the Western Ghats, southern India. Tropical Ecology 57 (2016) 533-543.

    Google Scholar 

  • D. N. Koul. Carbon sequestration estimates of various land uses in Terai Zone of West Bengal. M. Sc. Thesis 2004. Uttar Banga Krishi Viswavidyalaya, Pundibari, West Bengal. Unpubl.

    Google Scholar 

  • D. S. Powlson, A. P. Whitmore, K. W. Goulding. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science 62 (2011) 42-55.

    Article  CAS  Google Scholar 

  • D. Xiao-wen, L. Ying, H. Shi-jie. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition. Journal of Forestry Research 20 (2009) 111-116.

    Article  CAS  Google Scholar 

  • E. M. Spehn, A. Hector, J. Joshi, M. Scherer-Lorenzen, B. Schmid, E. Bazeley-White, C. Beierkuhnlein, M. C. Caldeira, M. Diemer, P. G. Dimitrakopoulos. Ecosystem effects of biodiversity manipulations in European grasslands. Ecological Monographs 75 (2005) 37-63.

    Article  Google Scholar 

  • FAO. Soil Organic Carbon: the hidden potential. Food and Agriculture Organization of the United Nations Rome, Italy 2017.

    Google Scholar 

  • G. Arora, S. Chaturvedi, R. Kaushal, A. Nain, S. Tewari, N. M. Alam, O. P. Chaturvedi Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Terai region of central Himalaya. Turkish Journal of Agriculture and Forestry 38 (2014) 550-560.

    Article  CAS  Google Scholar 

  • G. S. Haripriya. Carbon budget of the Indian forest ecosystem. Climate Change 56 (2003) 291-319.

    Article  CAS  Google Scholar 

  • G. Shukla, A. Manohar K., P. Rai, S. Chakravarty. Diversity, biomass accumulation and carbon storage of shrub community in a foothill forest of Indian Eastern Himalayas. Indian Forester 146 (2019) 309-314.

    Google Scholar 

  • G. Shukla, N. A. Pala, M. Moonis, S. Chakravarty. Carbon accumulation and partitioning in sub-humid forest stands of West Bengal India. Indian Forester 144 (2018) 229-233.

    Google Scholar 

  • G. Shukla, N. A. Pala, S. Gantait, S. Chakravarty. Quantitative description of upper storey vegetation at a foothill forest in Indian Eastern Himalayas. In: Plant Biodiversity: Monitoring, Assessment and Conservation, eds. A. A. Ansari, S. S. Gill, Z. K. Abbas, M. Naeem, CAB International. 2017 309-316.

    Chapter  Google Scholar 

  • G. Shukla, R. Biswas, A. P. Das, S. Chakravarty. Plant diversity at Chilapatta Reserve Forest of Terai Duars in sub-humid tropical foothills of Indian Eastern Himalayas. Journal of Forestry Research 2014 doi:https://doi.org/10.1007/s11676-014-0452-3.

  • G. Shukla, R. Biswas, A. P. Das, S. Chakravarty. Visual qualitative description of a humid tropical foothill forest in Indian eastern Himalayas. Biodiversity 14 (2013) 1-15. doi:https://doi.org/10.1080/14888386.2013.819786.

    Article  Google Scholar 

  • G. Shukla. Vegetation Analysis and Production Potential of Chilapatta Reserve Forest Ecosystem of West Bengal. Ph. D. Dissertation 2010. Uttar Banga Krishi Viswavidyalaya, Pundibari.

    Google Scholar 

  • G. Singh, B. Singh. Biomass equations and assessment of carbon stock of Calligonum polygonoides L., a shrub of Indian arid zone. Current Science 112 (2017) 2456-2462.

    Article  CAS  Google Scholar 

  • H. G. Champion, S. K. Seth. A Revised Survey of the Forest Types of India. Manager of Publications, New Delhi. 1968.

    Google Scholar 

  • I. P. Sapkota, M. Tigabu, P. C. Oden. Species diversity and regeneration of old-growth seasonally dry Shorea robusta forests following gap formation. Journal of Forestry Research, 20 (2009) 7-14.

    Article  Google Scholar 

  • IPCC. Land Use, Land-Use Change and Forestry - A special report of the Intergovernmental Panel on Climate Change (IPCC) Cambridge University Press, The Edinburgh Building, UK. 2000.

    Google Scholar 

  • J. C. L. Usuga, J. A. R. Toro, M. V. R. Alzate, A. J. L. Tapias. Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management 260 (2010) 1906-1913.

    Article  Google Scholar 

  • J. Chave, C. Andalo, S. Brown, M. A. Cairns. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (2005) 87-99.

    Article  CAS  Google Scholar 

  • J. D. S. Negi, S. C. Sharma, D. C. Sharma. Comparative assessment of methods for estimating biomass in forest ecosystem. Indian Forester 140 (1998) 1102-1132.

    Google Scholar 

  • J. D. S. Negi, S. C. Sharma. Biomass production and nutrient distribution in an age series of Eucalyptus hybrid plantation in Tamil Nadu. Indian Forester 111 (1985) 1111-1122.

    Google Scholar 

  • J. Evans. The effects of leaf position and leaf age in foliar analysis of Gmelina arborea. Plant and soil 52 (1979) 547-552

    Article  CAS  Google Scholar 

  • J. Mulder, H. A. De Wit, H. W. J. Boonen, L. R. Bakken. Increased levels of aluminum in forest soils: effects on the stores of soil organic car-bon. Water, Air and Soil Pollution 130 (2001) 989-994 doi:https://doi.org/10.1023/A:1013987607826

    Article  Google Scholar 

  • J. Sanderman, J. A. Baldock. Accounting for soil carbon sequestration in national inventories: a soil scientist's perspective. Environment Research Letter 5 (2010) 034003.

    Article  CAS  Google Scholar 

  • K. Paustian, J. Lehmann, S. Ogle, D. Reay, G. P. Robertson, P. Smith. Climate-smart soils. Nature 532 (2016) 49-57.

    Article  CAS  Google Scholar 

  • K. R. Kirby, C. Potvin. Variation in carbon storage among tree species implications for the management of a small scale carbon sink project. Forest Ecology and Management 246 (2007) 208-221.

    Article  Google Scholar 

  • K. S. Singh. Relative growth and biomass production of some MPTS under silvi-pastoral system on a stony rangeland of arid zone. Indian Forester 131 (2005) 719-723.

    Google Scholar 

  • K. Sreenivas, V. K. Dadhwal, S. Kumar, G. S. Harsha, T. Mitran, G. Sujatha, G. J. R. Suresh, M. A. Fyzee, T. Ravisankar. Digital mapping of soil organic and inorganic carbon status in India. Geoderma 269 (2016) 160-173.

    Article  CAS  Google Scholar 

  • L. A. Pragasan Tree carbon stock assessment from the tropical forests of Bodamalai hills located in India. Journal of Earth Science and Climate Change 6 (2015) 1-6.

    Google Scholar 

  • L. A. Pragasan, N. Parthasarathy. Landscape-level tree diversity assessment in tropical forests of southern Eastern Ghats. Indian Flora 205 (2010) 728-737.

    Article  Google Scholar 

  • L. A. Pragasan. Carbon stock assessment in the vegetation of the Chitteri Reserve Forest of the Eastern Ghats in India based on non-destructive method using tree inventory data. Journal of Earth Science and Climate Change S11 (2014) 001.

    Google Scholar 

  • L. S. Devi, P. S. Yadava. Aboveground biomass and net primary production of semi-evergreen tropical forest of Manipur, north-eastern India. Journal of Forestry Research 20 (2009) 151-155.

    Article  Google Scholar 

  • L. Vesterdal, I. K. Schmidt, I. Callesen, L. O. Nilsson, P. Gundersen. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management 255 (2008) 35-48 doi:https://doi.org/10.1016/j.foreco.2007.08.015

    Article  Google Scholar 

  • M. A. Cairns, S. Brown, E. H. Helmer, G. A. Baumgardner. Root biomass allocation in the world’s upland forests. Oecologia 111 (1997) 1-11.

    Article  Google Scholar 

  • M. C. Pande, V. N. Tandon, M. Negi. Biomass production in plantation ecosystem of Ailanthus excelsa at 5 different ages in Uttar Pradesh. Indian Forester 114 (1988) 362-371.

    Google Scholar 

  • M. C. Ruiz-Jaen, C. Potvin. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytologist 189 (2010) 978-987.

    Article  Google Scholar 

  • M. F. Justine, W. Yang, F. Wu, B. Tan, M. N. Khan, Y. Zhao. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests 6 (2015) 3665-3682.

    Article  Google Scholar 

  • M. Hossain, Fazlul-Hoque. Litter production and decomposition in mangroves - a review. Indian Journal of Forestry 31 (2008) 227-238.

    Google Scholar 

  • M. K. Behera, N. P. Mohapatra. Biomass accumulation and carbon stocks in 13 different clones of teak (Tectona grandis Linn. F.) in Odisha, India. Current World Environment 10 (2015) 1011-1016.

    Article  Google Scholar 

  • M. N. Subedi. Above ground biomass of Quercus semecarpifolia Sm. Forest surveyed on natural and semi-natural stands in Nepal. Indian Forester 130 (2004) 858-866.

    Google Scholar 

  • M. Tamang, R. Chettri, Vineeta, G. Shukla, J. A. Bhat, A. Kumar, M. Kumar, A., Suryawanshi, A., Cabral-Pinto, M., Chakravarty, S. Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas. Land 10 (2021b) 387 doi:https://doi.org/10.3390/land10040387

    Article  Google Scholar 

  • M. Uriarte, B. L. Turner, J. Thompson, J. K. Zimmerman. Linking spatial patter ns of leaf litter fall and soil nutrients in a tropical forest: a neighborhood approach. Ecological Applications 25 (2015) 2022-2034.

    Article  Google Scholar 

  • N. Giri, L. Rawat. Assessment of biomass carbon stock in an Ailanthus excelsa Roxb. plantation Uttarakhand, India. Journal of Ecology and the Natural Environment 5 (2013) 52-359.

    Article  CAS  Google Scholar 

  • N. Lodhiyal, L. S. Lodhiyal. Biomass and net primary productivity of Bhabar Shisham forests in central Himalaya, India. Forest Ecology and Management 176 (2003) 217–235.

    Article  Google Scholar 

  • N. Myers, R.A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, J. Kent. Biodiversity hotspots for conservation priorities. Nature 403 (2000) 853–858.

    Article  CAS  Google Scholar 

  • P. D. Erskine, D. Lamb, M. Bristow. Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? Forest Ecology and Management 233 (2006) 205-210.

    Article  Google Scholar 

  • P. K. Pande. Litter nutrient dynamics of Shorea robusta Gaertn. plantation at Doon Valley (Uttaranchal), India. Indian Forester, 127 (2001) 980-994.

    CAS  Google Scholar 

  • P. M. Attiwill. Nutrient cycling in Eucalyptus obliqua (L. Herit.) forest. III Growth, biomass and net primary production. Australian Journal of Botany 27 (1979) 439-458.

    Article  Google Scholar 

  • P. Rai, Vineeta, G. Shukla, Abha Manohar K., J. A. Bhat, A. Kumar, M. Kumar, M. Cabral-Pinto, S. Chakravarty, Carbon Storage of Single Tree and Mixed Tree Dominant Species Stands in a Reserve Forest- Case Study of the Eastern Sub-Himalayan Region of India. Land 10 (2021): 435. doi:https://doi.org/10.3390/land10040435

    Article  Google Scholar 

  • P. Singh, L. S. Lodhiyal. Biomass and carbon allocation in 8-year-old poplar (Populus deltoides Marsh) plantation in Tarai agroforestry systems of central Himalaya, India, New York Science Journal 2 (2009) 49-53.

    Google Scholar 

  • R. A. Hounghton, E. A. Davidson, G. M. Woodwell. Missing sinks, feedbacks and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles 12 (1998) 25-34.

    Article  Google Scholar 

  • R. H. Rizvi, S. K. Dhyani, R. S. Yadav, R. Singh. Biomass production and carbon stock of popular agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Current Science 100 (2011) 736-742.

    CAS  Google Scholar 

  • R. J. Mitchell, C. D. Campbell, S. J. Chapman, G. H. R. Osler, A. J. Vanbergen, L. C. Ross, C. M. Cameron, L. Cole. The cascading effects of birch on heather moorland: a test for the top-down control of an ecosystem engineer. Journal of Ecology 93 (2007) 540-554.

    Article  CAS  Google Scholar 

  • R. Lal. Beyond COP 21: potential and challenges of the “4 per Thousand” initiative. Journal of Soil Water Conservation 71 (2016) 20A-25A.

    Article  Google Scholar 

  • R. Mishra. Ecology Work Book. Oxford and IBH Publishing Co., New Delhi. 1968.

    Google Scholar 

  • R Prakash. Forest Management. International Book Distributors, Dehradun, India. 1986 p. 214.

    Google Scholar 

  • R. P. Yadav, J. K. Bisht, J. C. Bhatt. Biomass, carbon stock under different production systems in the mid hills of Indian Himalaya. Tropical Ecology 58 (2017) 15-21.

    CAS  Google Scholar 

  • R. Shrestha, S. B. Karmacharya, P. K. Jha. Vegetational analysis of natural and degraded forests in Chitrepani in Siwalik region of Central Nepal. Tropical Ecology 41 (2000) 111-114.

    Google Scholar 

  • S. Bhadwal, R. Singh. Carbon sequestration estimates for forestry options under different land use scenarios in India. Current Science 83 (2002) 1380-1386.

    Google Scholar 

  • S. C. Sahu, M. Kumar, N. H. Ravindranath. Carbon stocks in natural and planted mangrove forests of Mahanadi Mangrove Wetland, East Coast of India. Current Science 110 (2016) 2253-2260.

    Article  CAS  Google Scholar 

  • S. Catovsky, M. A. Bradford, A. Hector. Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97 (2002) 443-448.

    Article  CAS  Google Scholar 

  • S. Hättenschwiler, P. Gasser. Soil animals alter plant litter diversity effects on decomposition. Proceedings of National Academy of Sciences USA 102 (2005) 1519-1124.

    Article  CAS  Google Scholar 

  • S. K. Chauhan, N. Gupta, Ritu, S. Yadav, R Chauhan. Biomass and carbon allocation in different parts of agroforestry tree species. Indian Forester 135 (2009) 981-993.

    Google Scholar 

  • S. L. Brown, P. Schrooder, J. S. Kern. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management 123 (1999) 81-90.

    Article  Google Scholar 

  • S. L. Swamy, A. Mishra, S. Puri. Comparison of growth, biomass and nutrient distribution in five promising clones of Populus deltoides under an agrisilviculture system. Bioresource Technology 97 (2006) 57-68.

    Article  CAS  Google Scholar 

  • S. L. Swamy, S. Puri, A. K. Singh. Growth, biomass, carbon storage and nutrient distribution in Gmelina arborea Roxb. stands on red lateritic soils in central India. Bioresource Technology 90 (2003) 109-126.

    Article  CAS  Google Scholar 

  • S. Liu, X. Yu. Nutrient cycling of planted forest of Pinus tabulaeformis in the Miyun Reservoir Watershed, Beijing. Frontier Forestry China 4 (2009) 46-52.

    Article  Google Scholar 

  • S. S. Bargali, S. P. Singh, R. P. Singh. Structure and function of an age series of eucalyptus plantations in central Himalaya. I. Dry matter dynamics. Annals of Botany 69 (1992) 405-411.

    Article  Google Scholar 

  • S. Y. Lee. Mangrove out welling: a review. Hydrobiology 295 (1995) 203-212.

    Article  Google Scholar 

  • T. D. Steinke, A. J. Holland, Y. Singh. Leaching losses during decomposition of mangrove leaf litter. South African Journal of Botany 59 (1993) 21-25.

    Article  CAS  Google Scholar 

  • T. Sariyildiz, J. M. Anderson. Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biology and Biochemistry 35 (2003) 391-399.

    Article  CAS  Google Scholar 

  • T. Urquiza-Haas, P. M. Dolman, C. A. Peres. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. Forest Ecology and Management 247 (2007) 80-90.

    Article  Google Scholar 

  • T. V. Con, N. T. Thang, D. T. T. Ha, C. C. Khiem, T. H. Quy, V. T. Lam, T. V. Do, S. Tamotsu. Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam. Forest Ecology and Management 310 (2013) 213-218.

    Article  Google Scholar 

  • T. V. Do, A. Osawa, N. T. Thang. Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. Forest Ecology and Management 259 (2010) 16501659

    Google Scholar 

  • U. Niinemets, A. Portsumuth, M. Tobias. Leaf shape and venation pattern alter the support investments within leaf lamia in temperate species: a neglected sources of leaf physiological differentiation. Functional Ecology 21 (2007) 28-40.

    Article  Google Scholar 

  • V. Rawat, J. D. S. Negi. Biomass production of E. tereticornis in different agroecological regions of India. Indian Forester 130 (2004) 762-770.

    Google Scholar 

  • W. B. Badgery, A. T. Simmons, B. W. Murphy, A. Rawson, K. O. Andersson, V. E. Lonergan. The influence of land use and management on soil carbon levels for crop-pasture systems in Central New South Wales, Australia, Agriculture Ecosystem and Environment 196 (2014)147-157.

    Article  CAS  Google Scholar 

  • W. Purahong, D. Kapturska, M. J. Pecyna, E. Schulz, M. Schloter, F. Buscot, M. Hofrichter, D. Dirk Kruger. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests. PLoS ONE e93700 (2014) doi:https://doi.org/10.1371/journal.pone.0093700.

  • Y. Zhang, B. Duan, J-R. Xian, H. Korpelainen, C. Li. Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. Forest Ecology and Management 262 (2011) 361-369.

    Google Scholar 

  • Z. S. Zhang, X. R. Li, L. C. Liu, R. L. Jia, J. G. Zhang, T. Wang. Distribution, biomass and dynamics of root in revegetated stand of Caragana korshinskii in the Tengger Desert, north-western China. Journal of Plant Research 122 (2009) 109-119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, P., Shukla, G., Vineeta, Bhat, J.A., Chakravarty, S. (2022). Carbon Stock Assessment in Sub-humid Tropical Forest Stands of the Eastern Himalayan Foothills. In: Sahana, M., Areendran, G., Raj, K. (eds) Conservation, Management and Monitoring of Forest Resources in India. Springer, Cham. https://doi.org/10.1007/978-3-030-98233-1_10

Download citation

Publish with us

Policies and ethics