Skip to main content
Log in

Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A novel approach to measure the contribution of airborne bacteria on corrosion effects of mild steel (MS) and aluminum alloy (AA) as a function of their exposure period, and the atmospheric chemical composition was investigated at an urban industrial coastal site, Singapore. The 16S rRNA and phylogenetic analyses showed that Firmicutes are the predominant bacteria detected in AA and MS samples. The dominant bacterial groups identified were Bacillaceae, Staphylococcaceae, and Paenibacillaceae. The growth and proliferation of these bacteria could be due to the presence of humidity and chemical pollutants in the atmosphere, leading to corrosion. Weight loss showed stronger corrosion resistance of AA (1.37 mg/cm2) than MS (26.13 mg/cm2) over the exposure period of 150 days. The higher corrosion rate could be a result of simultaneous action of pollutants and bacterial exopolysaccharides on the metal surfaces. This study demonstrates the significant involvement of airborne bacteria on atmospheric corrosion of engineering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • An HF (1997) Laboratory methods for studies of bacterial adhesion. J Microbiol Meth 30:141–152

    Article  CAS  Google Scholar 

  • Antunes RA, Costa J, Araujo DL (2003) Characterization of atmospheric corrosion products formed on steels. Mater Res 6:403

    Article  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidelman JG, Struhl KE (1988) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Barton K (1976) Protection against atmospheric corrosion. Wiley, London, p 147

    Google Scholar 

  • Beech B (2004) Corrosion of technical materials in the presence of biofilms–current understanding and state-of-the art methods of study. Int Biodeter Biodegr 53:177–183

    Article  CAS  Google Scholar 

  • Bentiss F, Traisnel M, Vezin H, Lagrenee M (2000) Electrochemical study of substituted triazoles adsorption on mild steel. Ind Eng Chem Res 39:3732–3736

    Article  CAS  Google Scholar 

  • Borenstein SW (1988) Microbiologically influenced corrosion failures of austenitic stainless steel analysis. Mater Perform 27:62–66

    CAS  Google Scholar 

  • Brown PW, Masters LW (1982) In: Ailor WH (ed) Atmospheric corrosion. Wiley, New York, p 37

    Google Scholar 

  • Busalmen JP, Vazquez M, de Sanchez SR (2002) New evidence on the catalase mechanism of microbial corrosion. Electrochim Acta 47:1857–1865

    Article  CAS  Google Scholar 

  • Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinf 4:29–32

    Article  Google Scholar 

  • Contreras CA, Sugita S, Ramos E (2006) Preparation of sodium aluminate from basic aluminium sulphate. J Mater 2:1–13

    Google Scholar 

  • Dan Z, Takigawa S, Muto I, Hara N (2011) Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys. Corros Sci 53:2006–2014

    Article  CAS  Google Scholar 

  • Davis JR (1993) ASM specialty handbook: aluminum and aluminum alloys. ASM International, OH, USA

    Google Scholar 

  • De la Fuente D, Diaz I, Simancas J, Chico B, Morcillo M (2011) Long-term atmospheric corrosion of mild steel. Corros Sci 53:604–617

    Article  CAS  Google Scholar 

  • Despres VR, Nowoisky JF, Klose M, Conrad R, Andreae MO, Poschl U (2007) Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4:1127–1141

    Article  CAS  Google Scholar 

  • Flemming HC (1996) Biofouling and microbiologically influenced corrosion (MIC) an economical and technical overview. In: Heitz E, Sand W, Flemming H-C (eds) Microbial deterioration of materials. Springer, Heidelberg

    Google Scholar 

  • Fonseca ITE, Picciochi R, Mendonca MH, Ramos AC (2004) The atmospheric corrosion of copper at two sites in Portugal: a comparative study. Corros Sci 46:547–561

    Article  CAS  Google Scholar 

  • Graedel TEJ (1989) Corrosion mechanisms for aluminum exposed to the atmosphere reviews and news. J Electrochem Soc 136:204C–212C

    Article  CAS  Google Scholar 

  • Harimawan A, Rajasekar A, Ting YP (2011) Bacteria attachment to surfaces–AFM force spectroscopy and physicochemical analyses. J Colloid Interface Sci 364:213–218

    Article  CAS  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Article  Google Scholar 

  • Holt JG, Kreig NR, Sneath PHA, Stanely JT (1994) In: Williams ST (ed) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Jones JG (1986) In: Marshall KC (ed) In iron transformation by fresh water bacteria in advances in microbial ecology. Plenum, New York, p 149

    Google Scholar 

  • Jones DA, Amy PS (2000) Related electrochemical characteristics of microbial metabolism and iron corrosion. Ind Eng Chem Res 39:575–582

    Article  CAS  Google Scholar 

  • Kim SJ, Weon HY, Kim YS, Kwon SW (2011) Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. isolated from soil samples in Korea. J Microbiol 49:1033–1038

    Article  CAS  Google Scholar 

  • Kimura MA (1980) Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Koch JH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2002) Corrosion cost and preventive strategies in the United States. Federal Highway Administration, Washington, DC, Report No. FHWA-RD 01-156

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, Mc William H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Ma Y, Li Y, Wang F (2010) The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment. Corros Sci 52:1796–1800

    Article  CAS  Google Scholar 

  • Machuca LL, Jeffrey R, Melchers RE (2016) Microorganisms associated with corrosion of structural steel in diverse atmospheres. Int Biodeter Biodegr 114:234–243

    Article  CAS  Google Scholar 

  • Maruthamuthu S, Muthukumar N, Natesan M, Palaniswamy N (2008) Role of air microbes on atmospheric corrosion. Curr Sci 94:359–363

    CAS  Google Scholar 

  • May E, Lewis FJ, Pereira S, Tayler S, Seaward MRD, Allsopp D (1993) Microbial deterioration of building stone–a review. Biodeterior Abstr 7:109–123

    Google Scholar 

  • Narenkumar J, Madhavan J, Nicoletti M, Benelli G, Murugan K, Rajasekar A (2016) Role of bacterial plasmid on biofilm formation and its influence on corrosion of engineering materials. J Bio Tribo Corros 2:24

    Article  Google Scholar 

  • Natesan M, Venkatachari G, Palaniswamy N (2006) Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron, and aluminium at 10 exposure stations in India. Corros Sci 48:3584–3608

    Article  CAS  Google Scholar 

  • Onyenwoke RU, Brill JA, Farahi K, Wiegel J (2004) Sporulation genes in members of the G+C Gram-type-positive phylogenetic branch (Firmicutes). Arch Microbiol 182:182–192

    Article  CAS  Google Scholar 

  • Qing XZ, Wang CZ, Wang XH (2004) The new research development of the atmospheric corrosion data and rule about material in Chongqing and Wanning districts. Commun Corros Stat (in Chinese) 291:2–7

    Google Scholar 

  • Rajasekar A, Maruthamuthu S, Muthukumar N, Mohanan S, Subramanian P, Palaniswamy P (2005) Bacterial degradation of naphtha and its influence on corrosion. Corros Sci 47:257–271

    Article  CAS  Google Scholar 

  • Rajasekar A, Anandkumar B, Maruthamuthu S, Ting YP, Rahman PKSM (2010) Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl Microbiol Biotech 85:175–1188

    Article  Google Scholar 

  • Rajasekar A, Rajasekhar B, Kuma Joshua VM (2011) Role of hydrocarbon degrading bacteria Serratia marcescens ACE2 and Bacillus cereus ACE4 on corrosion of carbon steel API 5LX. Ind Eng Chem Res 50:10041–10046

    Article  CAS  Google Scholar 

  • Ramachandran S, Srivastava R (2016) Mixing states of aerosols over four environmentally distinct atmospheric regimes in Asia: coastal, urban, and industrial locations influenced by dust. Environ Sci Pollut Res. doi:10.1007/s11356-016-6254-8

    Google Scholar 

  • Raman A, Nasrazadani S, Sharma L, Razvan A (1987) Morphology of rust phases formed on weathering steels during outdoor atmospheric exposure in sheltered locations under the bridges. Prakt Metallogr 24:535

    CAS  Google Scholar 

  • Raman A, Nasrazadani S, Sharma L (1989) Morphology of rust phases formed on weathering steels in various laboratory corrosion tests. Metallography 22:79–96

    Article  CAS  Google Scholar 

  • Sagoe-Crentsil KK, Glasser FP (1993) Constitution of green rust and its significance to the corrosion of steel in Portland cement. Corrosion 49:457–463

    Article  CAS  Google Scholar 

  • Sarro MI, Garcia AM, Rivalta VM, Moreno DA, Arroyo I (2006) Biodeterioration of the Lions Fountain at the Alhambra Palace, Granada (Spain). Build Environ 41:1811–1820

    Article  Google Scholar 

  • Sherar BWA, Power IM, Keech PG, Mitlin S, Southam G, Shoesmith DW (2011) Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corros Sci 53:955–960

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Teske A, Hinrichs KU, Edgcomb V, Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microb 68:1994–2007

    Article  CAS  Google Scholar 

  • Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6

    Article  CAS  Google Scholar 

  • Urbano R, Palenik B, Gaston CJ, Prather KA (2010) Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. Biogeosci Discuss 7:5931–5951

    Article  Google Scholar 

  • Varotsos C, Tzanis C, Cracknell A (2009) The enhanced deterioration of the cultural heritage monuments due to air pollution. Environ Sci Pollut Res 16:590–592

    Article  Google Scholar 

  • Watkinson DE, Emmerson NJ (2016) The impact of aqueous washing on the ability of βFeOOH to corrode iron. Environ Sci Pollut Res. doi:10.1007/s11356-016-6749-3

    Google Scholar 

  • Yalfani MS, Santiago M, Pérez-Ramírez J (2007) In situ studied during thermal activation of dawsonite-type compounds to oxide catalysts. J Mater Chem 17:1222–1229

    Article  CAS  Google Scholar 

  • Zhu XY, Lubeck J, Kilbane JJ (2003) Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69:354–5363

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the two anonymous reviewers for improving the earlier version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruliah Rajasekar.

Additional information

Responsible editor: Diane Purchase

Electronic supplementary material

Fig. S1

(DOCX 712 kb)

Fig. S2

(DOCX 258 kb)

Fig. S3

(DOCX 1469 kb)

Table S1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekar, A., Xiao, W., Sethuraman, M. et al. Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100. Environ Sci Pollut Res 24, 8120–8136 (2017). https://doi.org/10.1007/s11356-017-8501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8501-z

Keywords

Navigation