Skip to main content
Log in

Chemical characterization and quantitativ e assessment of source-specific health risk of trace metals in PM1.0 at a road site of Delhi, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study presents the concentration of submicron aerosol (PM1.0) collected during November, 2009 to March, 2010 at two road sites near the Indian Institute of Technology Delhi campus. In winter, PM1.0 composed 83% of PM2.5 indicating the dominance of combustion activity-generated particles. Principal component analysis (PCA) proved secondary aerosol formation as a dominant process in enhancing aerosol concentration at a receptor site along with biomass burning, vehicle exhaust, road dust, engine and tire tear wear, and secondary ammonia. The non-carcinogenic and excess cancer risk for adults and children were estimated for trace element data set available for road site and at elevated site from another parallel work. The decrease in average hazard quotient (HQ) for children and adults was estimated in following order: Mn > Cr > Ni > Pb > Zn > Cu both at road and elevated site. For children, the mean HQs were observed in safe level for Cu, Ni, Zn, and Pb; however, values exceeded safe limit for Cr and Mn at road site. The average highest hazard index values for children and adults were estimated as 22 and 10, respectively, for road site and 7 and 3 for elevated site. The road site average excess cancer risk (ECR) risk of Cr and Ni was close to tolerable limit (10−4) for adults and it was 13–16 times higher than the safe limit (10−6) for children. The ECR of Ni for adults and children was 102 and 14 times higher at road site compared to elevated site. Overall, the observed ECR values far exceed the acceptable level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aatmeeyata, Kaul DS, Sharma M (2009) Traffic generated non-exhaust particulate emissions from concrete pavement: a mass and particle size study for two-wheelers and small cars. Atmos Environ 43(35):5691–5697. https://doi.org/10.1016/j.atmosenv.2009.07.032

    Article  CAS  Google Scholar 

  • Andreae, O.M., Annegran, T.W., Beer, H., Cachier, J., Le Canut, H., Elbert, P., Maenhaut, W., Salma, I., Wienhold, F.G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition, Journal of geophysical research. William Byrd Press for John Hopkins Press

  • Artaxo P, Oyola P, Martinez R (1999) Aerosol composition and source apportionment in Santiago de Chile. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 150(1-4):409–416. https://doi.org/10.1016/S0168-583X(98)01078-7

    Article  CAS  Google Scholar 

  • Bari A, Kindzierski WB (2016) Fine particulate matter PM2.5 in Edmonton, Canada: source apportionment and potential risk for human health. Environ Pollut 218:219–229. https://doi.org/10.1016/j.envpol.2016.06.014

    Article  CAS  Google Scholar 

  • Bari MA, Kindzierski WB (2017) Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada. Chemosphere 173:160–171. https://doi.org/10.1016/j.chemosphere.2016.12.157

    Article  CAS  Google Scholar 

  • Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38(19):3025–3038. https://doi.org/10.1016/j.atmosenv.2004.02.042

    Article  CAS  Google Scholar 

  • Boldo E, Linares C, Lumbreras J, Borge R, Narros A, García-Pérez J, Fernández-Navarro P, Pérez-Gómez B, Aragonés N, Ramis R, Pollán M, Moreno T, Karanasiou A, López-Abente G (2011) Health impact assessment of a reduction in ambient PM2.5 levels in Spain. Environ Int 37(2):342–348. https://doi.org/10.1016/j.envint.2010.10.004

    Article  Google Scholar 

  • Brunekreef, B., Beelen, R.M.J., Hoek, G., Schouten, L.J., Bausch-Goldbohm, S., Fischer, P., Armstrong, B., Hughes, E., Jerrett, M., van den Brandt, P., 2009. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Res Rep Health Eff Inst Mar, 5–71-89

  • Burgard DA, Bishop GA, Stedman DH, Gessner VH, Daeschlein C (2006) Remote sensing of in-use heavy-duty diesel trucks. Environ Sci Technol 40(22):6938–6942. https://doi.org/10.1021/es060989a

    Article  CAS  Google Scholar 

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur Region, India. Aerosol Air Qual Res 10:433–445. https://doi.org/10.4209/aaqr.2009.11.0071

    CAS  Google Scholar 

  • Cheng Y, Lee SC, Ho KF, Chow JC, Watson JG, Louie PKK, Cao JJ, Hai X (2010) Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong. Sci Total Environ 408(7):1621–1627. https://doi.org/10.1016/j.scitotenv.2009.11.061

    Article  CAS  Google Scholar 

  • Cheng Y, Zou SC, Lee SC, Chow JC, Ho KF, Watson JG, Han YM, Zhang RJ, Zhang F, Yau PS, Huang Y, Bai Y, Wu WJ (2011) Characteristics and source apportionment of PM1.0 emissions at a roadside station. J Hazard Mater 195:82–91. https://doi.org/10.1016/j.jhazmat.2011.08.005

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Fujita EM, Lu Z, Lawson DR, Ashbaugh LL (1994) Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmos Environ 28(12):2061–2080. https://doi.org/10.1016/1352-2310(94)90474-X

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Kuhns H, Etyemezian V, Lowenthal DH, Crow D, Kohl SD, Engelbrecht JP, Green MC (2004) Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere 54(2):185–208. https://doi.org/10.1016/j.chemosphere.2003.07.004

    Article  CAS  Google Scholar 

  • CPCB, 2010. Central pollution control board, air quality monitoring, emission inventory and source apportionment study for Indian cities, National Summary Report The Central Pollution Control Board, New Delhi, India

  • Delfino, R.J., Staimer, N., Tjoa, T., Gillen, D., Kleinman, M.T., Sioutas, C., Cooper, D., 2008. Research | children’s health personal and ambient air pollution exposures and lung function decrements in children with asthma, 550–558. doi:https://doi.org/10.1289/ehp.10911

  • Deshmukh DK, Deb MK, Mkoma SL (2013) Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India. Air Qual Atmos Heal 6(1):259–276. https://doi.org/10.1007/s11869-011-0169-9

    Article  CAS  Google Scholar 

  • Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44(2):141–146. https://doi.org/10.1016/j.atmosenv.2009.10.016

    Article  CAS  Google Scholar 

  • Gioia SMCL, Babinski M, Weiss DJ, Kerr AAFS (2010) Insights into the dynamics and sources of atmospheric lead and particulate matter in São Paulo, Brazil, from high temporal resolution sampling. Atmos Res 98(2-4):478–485. https://doi.org/10.1016/j.atmosres.2010.08.016

    Article  CAS  Google Scholar 

  • Godoi RHM, Godoi AFL, de Quadros LC, Polezer G, Silva TOB, Yamamoto CI, van Grieken R, Potgieter-Vermaak S (2013) Risk assessment and spatial chemical variability of PM collected at selected bus stations. Air Qual Atmos Heal 6(4):725–735. https://doi.org/10.1007/s11869-013-0210-2

    Article  CAS  Google Scholar 

  • Gupta T, Jaiprakash, Dubey S (2011) Field performance evaluation of a newly developed PM2.5 sampler at IIT Kanpur. Sci Total Environ 409(18):3500–3507. https://doi.org/10.1016/j.scitotenv.2011.05.020

    Article  CAS  Google Scholar 

  • Gupta T, Mandariya A (2013) Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environ Sci Pollut Res 20(8):5615–5629. https://doi.org/10.1007/s11356-013-1580-6

    Article  CAS  Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249(1-3):85–101. https://doi.org/10.1016/S0048-9697(99)00513-6

    Article  CAS  Google Scholar 

  • Huang M, Wang W, Chan CY, Cheung KC, Man YB, Wang X, Wong MH (2014) Contamination and risk assessment (based on bio-accessibility via ingestion and inhalation) of metal (loid) s in outdoor and indoor particles from urban centers of Guangzhou, China. Sci Total Environ, 479, 117-124. https://doi.org/10.1016/j.scitotenv.2014.01.115

  • IRIS (Integrated Risk Assessment System), 1995. United States Environmental Protection Agency, www.epa.gov/IRIS/

  • Izhar S, Goel A, Chakraborty A, Gupta T (2016) Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 146:582–590. https://doi.org/10.1016/j.chemosphere.2015.12.039

    Article  CAS  Google Scholar 

  • Jaiprakash, Gazala H (2017) Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Sci Total Environ 586:900–916. https://doi.org/10.1016/j.scitotenv.2017.02.070

    Article  CAS  Google Scholar 

  • Jaiprakash, Singhai A, Habib G, Raman RS, Gupta T (2017) Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization. Environ Sci Pollut Res 24(1):445–462. https://doi.org/10.1007/s11356-016-7708-8

    Article  CAS  Google Scholar 

  • Jena S, Singh G (2017) Human health risk assessment of airborne trace elements in Dhanbad. India Atmos Pollut Res J 8(3):490–502. https://doi.org/10.1016/j.apr.2016.12.003

    Article  Google Scholar 

  • Kean AJ, Harley RA, Kendall GR (2003) Effects of vehicle speed and engine load on motor vehicle emissions. Environ Sci Technol 37(17):3739–3746. https://doi.org/10.1021/es0263588

    Article  CAS  Google Scholar 

  • Khan MK, Latif MT, Saw WH, Amil N, Nadzir MSM, Sahani M, Tahir NM, Chung JX (2016) Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmos Chem Phys 16(2):597–617. https://doi.org/10.5194/acp-16-597-2016

    Article  CAS  Google Scholar 

  • Khanna, I., Khare, M., Gargava, P., 2015. Health risks associated with heavy metals in fine particulate matter: a case study in Delhi City, India. 72–77

  • Khillare PS, Sarkar S (2012) Atmospheric pollution research airborne inhalable metals in residential areas of Delhi. India: Distrib Source Apportionment and Health Risks 3:46–54. https://doi.org/10.5094/APR.2012.004

    CAS  Google Scholar 

  • Kloog I (2016) Fine particulate matter (PM2.5) association with peripheral artery disease admissions in northeastern United States. Int J Environ Health Res 26(5-6):572–577. https://doi.org/10.1080/09603123.2016.1217315

    Article  CAS  Google Scholar 

  • Krall, J.R., Mulholland, J.A., Russell, A.G., Balachandran, S., Winquist, A., Tolbert, P.E., Waller, L.A., Sarnat, S.E., 2016. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. doi:https://doi.org/10.1289/EHP271

  • Kupiainen K, Tervahattu H, Raisanen M (2003) Experimental studies about the impact of traction sand on urban road dust composition. Sci Total Environ 308(1-3):175–184. https://doi.org/10.1016/S0048-9697(02)00674-5

    Article  CAS  Google Scholar 

  • Kurian, A. J., (2011) Chemical characterization of aerosol in Delhi: identification and quantification of sources sing positive matrix factorization. M.Tech. Thesis, IIT Delhi

  • Landis MS, Norris GA, Williams RW, Weinstein JP (2001) Personal exposures to PM2.5 mass and trace elements in Baltimore, MD, USA. Atmos Environ 35(36):6511–6524. https://doi.org/10.1016/S1352-2310(01)00407-1

    Article  CAS  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. https://doi.org/10.1021/es0206184

  • Lawrence S, Sokhi R, Ravindra K, Mao H, Douglas H, Bull ID (2013) Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos Environ 77:548–557. https://doi.org/10.1016/j.atmosenv.2013.03.040

    Article  CAS  Google Scholar 

  • Li Z, Yuan Z, Li Y, Lau AKH, Louie PKK (2015) Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000 and 2011. Atmos Environ 122:892–899

  • Liao HT, Chou CCK, Chow JC, Watson JG, Hopke PK, Wu CF (2015) Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environ Pollut 205:121–130. https://doi.org/10.1016/j.envpol.2015.05.035

    Article  CAS  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Ross Anderson H, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Shen Chen J, Tai-Ann Cheng A, Christine Child J, Cohen A, Ellicott Colson K, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Ray Dorsey E, Driscoll T, Edmond K, Eltahir Ali S, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Gerry Fowkes FR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Dean Hosgood H III, Hosgood H III, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang Y-H, Khatibzadeh S, Khoo J-P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Kent Lin J, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Mohd Hanafi ah K, Mokdad AA, Morawska L, Mozaff arian D, Murphy T, Naghavi M, Neal B, Nelson PK, Miquel Nolla J, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Arden Pope C III, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KRC, Stapelberg NJ, Steenland K, Stöckl H, Jacob Stovner L, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Lennert Veerman J, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray LCJ, Ezzati M, Lim SS, Flaxman AD, Andrews MPH KG, Atkinson CB, Carnahan EB, Colson BA, Engell BA, Freedman GB, Freeman BA, Gakidou MK, Jasrasaria E, Lozano RB, Mallinger MPH R, Mokdad L, Murphy AA, Naghavi T, Roberts M, Rosenfeld MPH TB, Sanman LC, Straney EB, Murray LL, Vos CJ, Charlson MPH T, Page F, Lopez A, Blore AD, Norman JD, Hall R, Veerman AW, Khatibzadeh JL, Shi S, Danaei P, Ding G, ScD EL, Giovannucci E, Laden ScD F, Lin AB, Lu JK, Micha YM, Mozaff arian R, Rao D, Salomon MB, Singh JA, White GM, MA RA, Adair-Rohani MPH H, Chafe MPH Z, Smith KR, Tran Ma JH, George S (2013) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260. https://doi.org/10.1016/S0140-6736(12)61766-8

    Article  Google Scholar 

  • Liu EF, Yan T, Birch G, Zhu YX (2014) Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ 476:522–531. https://doi.org/10.1016/j.scitotenv.2014.01.055

    Article  Google Scholar 

  • Malm WC, Sisler JF, Huffman D, Eldred RA, Cahill TA (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophys Res 99(D1):1347–1370. https://doi.org/10.1029/93JD02916

    Article  CAS  Google Scholar 

  • Mehta B, Venkataraman C, Bhushan M, Tripathi SN (2009) Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos Environ 43(6):1288–1295. https://doi.org/10.1016/j.atmosenv.2008.11.041

    Article  CAS  Google Scholar 

  • MORTH (2013) Road Transport Year Book 2012-13. Ministry of Road Transport and Highways, New Delhi

  • MSME (2013) Ministry of Micro Small and Medium Enterprises, annual report 2013–14. http://msme.gov.in/WriteReadData/DocumentFile/ANNUALREPORT-MSME-2013-14P.pdf

  • Nordin EZ, Eriksson AC, Roldin P, Nilsson PT, Carlsson JE, Kajos MK, Hellén H, Wittbom C, Rissler J, Löndahl J, Swietlicki E, Svenningsson B, Bohgard M, Kulmala M, Hallquist M, Pagels JH (2013) Geoscientific instrumentation methods and data systems secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmos Chem Phys 13(12):6101–6116. https://doi.org/10.5194/acp-13-6101-2013

    Article  Google Scholar 

  • Olson DS, Norris GA, Landis MS, Vette AF (2004) Chemical characterization of ambient particulate matter near the World Trade Center: elemental carbon, organic carbon, and mass reconstruction. Environ Sci Technol 38(17):4465–4473. https://doi.org/10.1021/es030689i

    Article  CAS  Google Scholar 

  • Pant P, Harrison RM (2013) Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos Environ 77:78–97. https://doi.org/10.1016/j.atmosenv.2013.04.028

  • Pant P, Harrison RM (2012) Critical review of receptor modelling for particulate matter: a case study of India. Atmos Environ 49:1–12. https://doi.org/10.1016/j.atmosenv.2011.11.060

    Article  CAS  Google Scholar 

  • Pant P, Shi Z, Pope FD, Harrison RM (2017) Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham. trace metals and organic molecular markers, UK, pp 117–130. https://doi.org/10.4209/aaqr.2016.01.0040

    Google Scholar 

  • Platt SM, El Haddad I, Zardini AA, Clairotte M, Astorga C, Wolf R, Slowik JG, Temime-Roussel B, Marchand N, Ježek I, Drinovec L, Močnik G, Möhler O, Richter R, Barmet P, Bianchi F, Baltensperger U, Prévôt ASH (2013) Geoscientific instrumentation methods and data systems secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmos Chem Phys 13(18):9141–9158. https://doi.org/10.5194/acp-13-9141-2013

    Article  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56(6):709–742. https://doi.org/10.1080/10473289.2006.10464485

    Article  CAS  Google Scholar 

  • Pulles T, Denier van der Gon H, Appelman W, Verheul M (2012) Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos Environ 61:641–651. https://doi.org/10.1016/j.atmosenv.2012.07.022

    Article  CAS  Google Scholar 

  • Rajeev P, Rajput P, Gupta T (2016) Chemical characteristics of aerosol and rain water during an El Nino and PDO influenced Indian summer monsoon. Atmos Environ 145:192–200. https://doi.org/10.1016/j.atmosenv.2016.09.026

    Article  CAS  Google Scholar 

  • Raman RS, Ramachandran S, Rastogix N (2010) Source identification of ambient aerosols over an urban region in western India. J Environ Monit 12(6):1330–1340. https://doi.org/10.1039/b925511g

    Article  Google Scholar 

  • RTI (2008) Research Triangle Institute (RTI), Standard Operating Procedure for Particulate Matter Gravimetric Analysis

  • Sadavarte P, Venkataraman C (2014) Trends in multi-pollutant emissions from a technology-linked inventory for India: I. Industry and transport sectors. Atmos Environ 99:353–364. https://doi.org/10.1016/j.atmosenv.2014.09.081

    Article  CAS  Google Scholar 

  • Sahu LK, Kondo Y, Miyazaki Y, Pongkiatkul P, Kim Oanh NT (2011) Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok. J Geophys Res Atmos 116(D15):1–14. https://doi.org/10.1029/2010JD015563

    Article  Google Scholar 

  • Sandhu K, Singh A, Vigyan Kendra K (2014) Impact of climatic change on human health. Indian Res J Ext Edu 14:36–48

    Google Scholar 

  • Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazard Mater 175(1-3):600–607. https://doi.org/10.1016/j.jhazmat.2009.10.047

    Article  CAS  Google Scholar 

  • Shukla A, Alam M (2010) Assessment of real world on-road vehicle emissions under dynamic urban traffic conditions in Delhi. Int J Urban Sci 14(2):207–220. https://doi.org/10.1080/12265934.2010.9693677

    Article  Google Scholar 

  • Shukla PC, Gupta T, Labhsetwar NK, Agarwal AK (2017) Trace metals and ions in particulates emitted by biodiesel fuelled engine. Fuel 188:603–609. https://doi.org/10.1016/j.fuel.2016.10.059

    Article  CAS  Google Scholar 

  • Singh DK, Gupta T (2016) Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain. Sci Total Environ 550:80–94. https://doi.org/10.1016/j.scitotenv.2016.01.037

    Article  CAS  Google Scholar 

  • Song S, Wu Y, Jiang J, Yang L, Cheng Y, Hao J (2012) Chemical characteristics of size-resolved PM 2.5 at a roadside environment in Beijing, China. Environ Pollut 161:215–221. https://doi.org/10.1016/j.envpol.2011.10.014

    Article  CAS  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400(1-3):270–282. https://doi.org/10.1016/j.scitotenv.2008.06.007

    Article  CAS  Google Scholar 

  • Thurston GD, Spengler JD (1985) A quantitative assessment of source contribution to inhalable particulate matter pollution in Metropolitan Boston. Atmos Environ 19(1):9–25. https://doi.org/10.1016/0004-6981(85)90132-5

    Article  CAS  Google Scholar 

  • Tsai JH, Lin JH, Yao YC, Chiang HL (2012) Size distribution and water soluble ions of ambient particulate matter on episode and non-episode days in southern Taiwan. Aerosol Air Qual Res 12:263–274. https://doi.org/10.4209/aaqr.2011.10.0167

    CAS  Google Scholar 

  • Updyke KM, Nguyen TB, Nizkorodov SA (2012) Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos Environ 63:22–31. https://doi.org/10.1016/j.atmosenv.2012.09.012

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency), (1998)  Quality assurance guidance document 2.12: monitoring PM2.5 in ambient air using designated reference or class I equivalent methods. National Exposure Research Laboratory, Research Triangle Park, NC

  • USEPA (U.S. Environmental Protection Agency), (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Office of Superfund Remediation and Technology Innovation, Washington, D.C.

  • USEPA (U.S. Environmental Protection Agency), (2009). Risk assessment guidance for superfund volume I: human health evaluation manual (part F, supplemental guidance for inhalation risk assessment). Office of Superfund Remediation and Technology Innovation, Washington, D.C.

  • USEPA, (2011). Risk assessment guidance for superfund. In: Part, A. (Ed.), Human health evaluation manual; part E, supplemental guidance for dermal risk assessment; part F, supplemental guidance for inhalation risk assessment, I. 

  • USEPA (United States Environmental Protection Agency), (2015). User's guide/technical background document for US EPA region 9's RSL (Regional Screening Levels) tables. http://www.epa.gov/region9/superfund/prg/

  • Vega E, Mugica V, Reyes E, Anchez G, Chow JC, Watson JG (2001) Chemical composition of fugitive dust emitters in Mexico City. Atmos Environ 35(23):4033–4039. https://doi.org/10.1016/S1352-2310(01)00164-9

    Article  CAS  Google Scholar 

  • Wu CF, Wu SY, Wu YH, Cullen AC, Larson TV, Williamson J, Liu LJ (2009) Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ Int 35(1):516–522. https://doi.org/10.1016/j.envint.2010.06.006

    Article  Google Scholar 

  • Yu H-L, Chien L-C (2016) Short-term population-based non-linear concentration–response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis. J Expo Sci Environ Epidemiol 26(2):197–206. https://doi.org/10.1038/jes.2015.21

    Article  Google Scholar 

  • Zheng N, Liu J, Wang Q, Liang Z (2010) Science of the total environment health risk assessment of heavy metal exposure to street dust in the zinc smelting district. Northeast of China 408(4):726–733. https://doi.org/10.1016/j.scitotenv.2009.10.075

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of IIT Delhi through seed grant for the completion of this project. The authors also acknowledge the contribution of M. Tech. colleague (Amrita Singhai) and for his participation in sample collection and chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gazala Habib.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, J., Lohia, T., Mandariya, A.K. et al. Chemical characterization and quantitativ e assessment of source-specific health risk of trace metals in PM1.0 at a road site of Delhi, India. Environ Sci Pollut Res 25, 8747–8764 (2018). https://doi.org/10.1007/s11356-017-1174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1174-9

Keywords

Navigation