Skip to main content

Advertisement

Log in

Trace elements and human health risks assessment of finer aerosol atmospheric particles (PM1)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study investigated PM1 (aerosol particles with an aerodynamic diameter ≤ 1.0 μm) mass concentrations and sixteen (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, S, Ti, and Zn) PM1-related trace elements. PM1 samples were collected in an anthropized area of international attention close to oil/gas pre-treatment plants in Agri Valley (Southern Italy). The PM1 mass concentrations varied from 3 to 16 μg/m3. The decreasing pattern of the trace element concentrations was S > Ca > Na > K ≈ Mg ≈ Fe> Al > Li > Cr > Zn > Ti> Cu > Ni ≈ Mn > Pb ≈ Cd. Anthropogenic local emissions such as biomass burning, vehicular traffic, and industrial sources mainly related to oil/gas pre-treatment plants were identified by the principal component analysis. Further, air mass back-trajectory analyses suggest an important contribute to the long-range transport on PM1 at Agri Valley. The carcinogenic (Cd, Cr(VI), Ni, and Pb) and non-carcinogenic (Cd, Cr(VI), Cu, Mn, Ni, Pb, and Zn) health risks both for children and for adults were assessed using the United State Environmental Protection Agency (USEPA) methods considering inhalation, ingestion, and dermal contact pathway. Chromium (VI) posed the highest carcinogenic risk for both children and adults. The integrated carcinogenic risks were respectively 3.45 × 10−5 and 1.38 × 10−4 for children and adults indicating that attention should be paid for carcinogenic health effects. Nickel posed the highest non-carcinogenic risk for children through inhalation pathway. The integrated non-carcinogenic risk showed a value higher than 1 highlighting that Cd, Cr(VI), Cu, Mn, Ni, Pb, and Zn may cause cumulative non-carcinogenic health effect for children from inhalation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed E, Kim KH, Shon ZH (2015) Long term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. Atmos Environ 101:125–133. https://doi.org/10.1016/j.atmosenv.2014.11.024

    Article  CAS  Google Scholar 

  • Akagi T, Fu FF, Hongo Y, Takahashi K (2011) Composition of rare earth elements in settling particles collected in the highly productive North Pacific Ocean and Bering Sea: implications for siliceous-matter dissolution kinetics and formation of two REE-enriched phases. Geochim Cosmochim Acta 75(17):4857–4876

    CAS  Google Scholar 

  • Alastuey A, Querol X, Plana F, Viana M, Ruiz C, Sánchez de la Campa A, De la Rosa J, Mantilla E, García dos Santos S (2006) Identification and chemical characterization of industrial particulate matter sources in southwest Spain. J Air Waste Manage Assoc 56(7):993–1006

    CAS  Google Scholar 

  • Alleman LY, Lamaison L, Perdrix E, Robache A, Galloo JC (2010) PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos Res 96(4):612–625

    CAS  Google Scholar 

  • Allen JL, Liu X, Pelkowski S, Palmer B, Conrad K, Oberdorster G et al (2014) Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ Health Perspect 122:939 1552 e 9924

    Google Scholar 

  • Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK (2009) Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmos Environ 43(17):2770–2780

    CAS  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15(4):955–966

    CAS  Google Scholar 

  • Ariola V, D’Alessandro A, Lucarelli F, Marcazzan G, Mazzei F, Nava S, Garcia-Orellana I, Prati P, Valli G, Vecchi R, Zucchiatti A (2006) Elemental characterization of PM10, PM2.5 and PM1 in the town of Genoa (Italy). Chemosphere 62(2):226–232

    CAS  Google Scholar 

  • Bosco ML, Varrica D, Dongarra G (2005) Case study: inorganic pollutants associated with particulate matter from an area near a petrochemical plant. Environ Res 99(1):18–30

    CAS  Google Scholar 

  • Bozlaker A, Buzcu-Güven B, Fraser MP, Chellam S (2013) Insights into PM10 sources in Houston, Texas: role of petroleum refineries in enriching lanthanoid metals during episodic emission events. Atmos Environ 69:109–117

    CAS  Google Scholar 

  • Caggiano R, Macchiato M, Trippetta S (2010) Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin. Sci Total Environ 408:884–895

    CAS  Google Scholar 

  • Calvello M, Caggiano R, Esposito F, Lettino A, Sabia S, Summa V, Pavese G (2017) IMAA (Integrated measurements of aerosol in Agri valley) campaign: multi-instrumental observations at the largest European oil/gas pre-treatment plant area. Atmos Environ 169:297–306

    CAS  Google Scholar 

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region, India. Aerosol Air Qual Res 10(5):433–445

    CAS  Google Scholar 

  • Chen P, Bi X, Zhang J, Wu J, Feng Y (2015) Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology 20:104–109

    CAS  Google Scholar 

  • Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE (2016) Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537–1546. https://doi.org/10.1289/EHP134

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Lowenthal DH, Chen LWA, Zielinska B, Mazzoleni LR, Magliano KL (2007) Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite. Atmos Chem Phys 7:1741–1754

    CAS  Google Scholar 

  • Dall’Osto, M., Harrison, R. M., Highwood, E. J., O’Dowd, C., Ceburnis, D., Querol, X., & Achterberg, E. P. (2010). Variation of the mixing state of Saharan dust particles with atmospheric transport. Atmospheric Environment, 44(26):3135–3146

  • Dirgawati M, Hinwood A, Nedkoff L, Hankey G, Yeap B, Flicker L, Nieuwenhuijsen M, Brunekreef B, Heyworth J (2019) Long-term exposure to low air pollutant concentrations and the relationship with all-cause mortality and stroke in older men epidemiology, 30:82–89. Epidemiology 30(Supplement 1):S82–S89. https://doi.org/10.1097/EDE.0000000000001034

    Article  Google Scholar 

  • Dubey B, Pal AK, Singh G (2012) Trace metal composition of airborne particulate matter in the coal mining and non–mining areas of Dhanbad Region, Jharkhand, India. Atmos Pol Res 3:238–246

    CAS  Google Scholar 

  • Gon Ryou H, Heo J, Kim SY (2018) Source apportionment of PM 10 and PM 2.5 air pollution, and possible impacts of study characteristics in South Korea. Environ Pollut 240:963–972

    Google Scholar 

  • Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, Vineis P, Forastiere F, Saldiva P, Yorifuji T, Loomis D (2014) Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ health perspect 122(9):a236

  • Harrison RM, Beddows DCS, Hu L, Yin J (2012) Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations. Atmos Chem Phys 12:8271e8283

    Google Scholar 

  • Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, Gholampour A, Arhami M, Kashani H, Zare A, Niazi S, Rastkari N, Nazmara S, Ghani M, Yunesian M (2015) Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Sci Total Environ 527–528:100–110

    Google Scholar 

  • Hieu NT, Lee BK (2010) Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos Res 98(2-4):526–537

    CAS  Google Scholar 

  • Holland NA, Fraiser CR, Sloan RC, Devlin RB, Brown DA, Wingard CJ (2017) Ultrafine particulate matter increase cardiac ischemia/reperfusion injury via mitochondrial permeability transition pore. Cardiovasc Toxicol 1e10:1530–7905

    Google Scholar 

  • Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2. 5 in Nanjing, China. Atmos Environ 57:146–152

    CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (2011). Agents Classified by the IARC Monographs, vol. 1 e 102

  • Karottki DG, Bekö G, Clausen G, Madsen AM, Andersen ZJ, Massling A, Ketzel M, Ellermann T, Lund R, Sigsgaard T, Møller P, Loft S (2014) Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects. Environ Int 73:372–381

    CAS  Google Scholar 

  • Ki-Hyun K, Ehsanul K, Shamin K (2015) A review on the human health impact of air borne particulate matter. Environ Int 74:136–143

    Google Scholar 

  • Kozakova J, Pokorna P, Vodicka P, Ondrackova L, Ondracek J, Křumal K, Mikuska P, Hovorka J, Moravec P, Schwarz J (2019) The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ Sci Pollut Res 26:1675–1692

    CAS  Google Scholar 

  • Kurt-Karakus PB (2012) Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environ Int 50:47–55

    CAS  Google Scholar 

  • Li H, Wang J, Wang Q, Qian X, Qian Y, Yang M, Li F, Lu H, Wang C (2015) Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: a case study in Nanjing, China. Atmos Environ 103:339–346

    CAS  Google Scholar 

  • Makkonen U, Hellen H, Anttila P, Ferm M (2010) Size distribution and chemical composition of airborne particles in south eastern Finland during different seasons and wild fire episodes in 2006. Sci Total Environ 408:644–651

    CAS  Google Scholar 

  • Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36(6):949–961

    CAS  Google Scholar 

  • Marenco F, Bonasoni P, Calzolari F, Ceriani M, Chiari M, Cristofanelli P, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Valli G, Vecchi R (2006) Characterization of atmospheric aerosols at Monte Cimone, Italy, during summer 2004: source apportionment and transport mechanisms. J Geophys Res 111:D24202

    Google Scholar 

  • Martin S, Griswold W (2001) Human health effects of heavy metals. Environ Sci Technol 15:1–6

    Google Scholar 

  • Mbengue S, Alleman LY, Flament P (2017) Metal-bearing fine particle sources in a coastal industrialized environment. Atmos Res 183:202–211

    CAS  Google Scholar 

  • Minguillón MC, Querol X, Baltensperger U, Prévôt ASH (2012) Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution. Sci Total Environ 427:191–202

    Google Scholar 

  • Murphy DM, Thomson DS (1997) Chemical composition of single aerosol particles at Idaho Hill: positive ion measurements. J Geophys Res Atmos 102(D5):6341–6352

    CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nano toxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect:823–839

    Google Scholar 

  • Onat B, Sahin UA, Akyuz T (2013) Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmos Pollut Res 4:101–105

    CAS  Google Scholar 

  • Perrone MR, Becagli S, Garcia Orza JA, Vecchi R, Dinoi A, Udisti R, Cabello M (2013) The impact of long-range-transport on PM1 and PM2.5 at a Central Mediterranean site. Atmos Environ 71:176–186

    CAS  Google Scholar 

  • Pikridas M, Bougiatioti A, Hildebrandt L, Engelhart GJ, Kostenidou E, Mohr C, Prevot ASH, Kouvarakis G, Zarmpas P, Burkhart JF, Lee BH, Psichoudaki M, Mihalopoulos N, Pilinis C, Stohl A, Baltensperger U, Kulmala M, Pandis SN (2010) The Finokalia aerosol measurement experiment–2008 (FAME-08): an overview. Atmos Chem Phys 10(14):6793–6806

    CAS  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56(6):709–742

    CAS  Google Scholar 

  • Prakash J, Lohia T, Mandariya AK, Habib G, Gupta T, Gupta SK (2018) Chemical characterization and quantitative assessment of source-specific health risk of trace metals in PM1.0 at a road site of Delhi India. Environ Sci Pollut Res:1–18

  • Rogula-Kozłowska W, Klejnowski K (2013) Submicrometer aerosol in rural and urban backgrounds in southern Poland: primary and secondary components of PM 1. Bull Environ Contam Toxicol 90(1):103–109

    Google Scholar 

  • Samek L, Furman L, Mikrut M, Regiel-Futyra A, Macyk W, Stochel G, van Eldik R (2017) Chemical composition of submicron and fine particulate matter collected in Krakow, Poand. Consequences for the APARIC project. Chemosphere 187:430–439

    CAS  Google Scholar 

  • Samoli E, Atkinson RW, Analitis A, Fuller GW, Beddows D, Green DC, Mudway IS, Harrison RM, Anderson HR, Kelly FJ (2016) Differential health effects of short-term exposure to source-specific particles in London, U.K. Environ Int 97:246–253

    CAS  Google Scholar 

  • Sánchez-Soberón F, Rovira J, Mari M, Sierra J, Nadal M, Domingo JL, Schuhmacher M (2015) Main components and human health risks assessment of PM10, PM2. 5, and PM1 in two areas influenced by cement plants. Atmos Environ 120:109–116

    Google Scholar 

  • Shah MH, Shaheen N, Jaffar M, Khalique A, Tariq SR, Manzoor S (2006) Spatial variations in selected metal contents and particle size distribution in an urban and rural atmosphere of Islamabad, Pakistan. J Environ Manag 78(2):128–137

    CAS  Google Scholar 

  • Shaughnessy WJ, Venigalla MM, Trump D (2015) Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population. Atmos Environ, 123:102–111.

    CAS  Google Scholar 

  • Solaimani P, Saffari A, Sioutas C, Bondy SC, Campbell A (2017) Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons. Neurotoxicology 58:50–57

    CAS  Google Scholar 

  • Speranza A, Caggiano R, Margiotta S, Trippetta S (2014) A novel approach to compare simultaneous size-segregated particulate matter (PM) concentration ratios by means of a dedicated triangular diagram using the Agri Valley PM measurements as an example. Nat Hazards Earth Syst Sci 14:2727–2733

    Google Scholar 

  • Squizzato S, Masiol M, Agostini C, Visin F, Formenton G, Harrison R-M, Rampazzo G (2016) Factors, origin and sources affecting PM1 concentrations and composition at an urban background site. Atmos Res 180:262–273

    CAS  Google Scholar 

  • Sudheer AK, Rengarajan R (2012) Atmospheric mineral dust and trace metals over urban environment in western India during winter. Aerosol Air Qual Res 12(5):923–933

    CAS  Google Scholar 

  • Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, Chan KM, Sahani M (2017) Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci Total Environ 601:556–570

    Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400(1-3):270–282

    CAS  Google Scholar 

  • Trippetta S, Caggiano R, Sabia S (2014) PM1 measurements at a site close to an oil/gas pre-treatment plant (Agri Valley - southern Italy): a preliminary study. Nat Hazards Earth Syst Sci 14:2337–2346

    Google Scholar 

  • US EPA (2011a). Risk Assessment Guidance for Superfund. In: Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment, vol. I. http://www.epa.gov/oswer/riskassessment/human_health_exposure.htm.

  • US EPA (2011b). The Screening Level (RSL) Tables (Last updated June 2011). Available on-line at: http://www.epa.gov/region9/superfund/prg/index.html.

  • USEPA (2009) Integrated science assessment for particulate matter (final report). United State Environmental Protection Agency, Washington D.C.

    Google Scholar 

  • Valotto G, Squizzato S, Masiol M, Zannoni D, Visin F, Rampazzo G (2014) Elemental characterization, sources and wind dependence of PM1 near Venice, Italy. Atmos Res 143:371–379

    CAS  Google Scholar 

  • Vecchi R, Marcazzan G, Valli G, Ceriani M, Antoniazzi C (2014) The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos Environ 38:4437–4446

    Google Scholar 

  • Wang X, Bi X, Sheng G, Fu J (2006) Chemical Composition and Sources of PM10 and PM2.5 Aerosols in Guangzhou, China. Environ Monit Assess 119:425. https://doi.org/10.1007/s10661-005-9034-3

    Article  CAS  Google Scholar 

  • Wang J, Pan Y, Tian S, Chen X, Wang L, Wang Y (2016) Size distributions and health risks of particulate trace elements in rural areas in northeaster China. Atmos Res 168:191–204

    CAS  Google Scholar 

  • Widziewicz K, Rogula-Kozłowska W, Loska K (2016) Cancer risk from arsenic and chromium species bound to PM2. 5 and PM1–Polish case study. Atmos Pollut Res 7(5):884–894

    Google Scholar 

  • Wu Y, Ge X, Wang J, Shen Y, Ye Z, Ge S, Wu Y, Yu H, Chen M (2018) Responses of secondary aerosols to relative humidity and photochemical activities in an industrialized environment during late winter Atmos. Environ. 193:66–78

    CAS  Google Scholar 

  • Zajusz-Zubek E, Radko T, Mainka A (2017) Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. Environ Monit Assess 189(8):389

    Google Scholar 

  • Zhang YY, Ji XT, Ku TT, Li GK, Sang N (2016) Heavy metals bound to fine particulate matter from northern China include season-dependent health risk: a study based on myocardial toxicity. Environ Pollut 216:380–390

    CAS  Google Scholar 

  • Zhang Y, Chu M, Zhang J, Duan J, Hu D, Zhang W, Yang X, Furong D, Zhiwei S (2019) Urine metabolites associated with cardiovascular effects from exposure of size-fractioned particulate matter in a subway environment: a randomized crossover study. Environ Int 130:104920

    CAS  Google Scholar 

  • Zhao S, Yu Y, Xia D, Yin D, He J, Liu N, Li F (2015) Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts. Environ Pollut 207:107–122

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT model used in this work.

Funding

This study was partially funded by the Smart Basilicata project, approved by the Italian Ministry of Education, University and Research (Notice MIUR no. 84/ Ric 2012, PON 2007-2013 of 2 March 2012), and with the 2007-2013 Basilicata Regional Authority Cohesion Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Caggiano.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caggiano, R., Sabia, S. & Speranza, A. Trace elements and human health risks assessment of finer aerosol atmospheric particles (PM1). Environ Sci Pollut Res 26, 36423–36433 (2019). https://doi.org/10.1007/s11356-019-06756-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06756-w

Keywords

Navigation