Skip to main content
Log in

Interaction effects of As, Cd and Pb on their respective bioaccessibility with time in co-contaminated soils assessed by the Unified BARGE Method

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Interaction effects of As, Cd and Pb on their respective bioaccessibility in co-contaminated soils were reported. In addition, the influence of aging time (up to 90 days) on potential interactions was also investigated. Experiments were carried out by spiking four diverse soils with single, binary or ternary mixtures of As, Cd and Pb. Soils were measured for bioaccessibility at different aging periods. Results demonstrate that bioaccessibility of As, Cd and Pb reached a steady state after soils were aged for 30 days. Bioaccessibility of As, Cd and Pb in soils spiked with binary mixtures of As, Cd and Pb were not affected by the other co-existing metal/metalloid. But when As, Cd and Pb were introduced together to acidic soils which lacked abundant binding sites, intestinal bioaccessibility of Cd was increased at the early stage of aging (7 to 30 days) whilst bioaccessibility of As and Pb remained unchanged. However, when Pb and As were added after Cd has been incubated in soil for 7 days, Cd intestinal bioaccessibility was not influenced by As and Pb. Therefore, a number of factors should be taken into consideration when estimating the bioaccessibility of mixed As, Cd and Pb, including the loadings of As, Cd and Pb in soils, the time for which they have been aged together and the time period between As, Cd and Pb entering the soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appel C, Ma LQ, Rhue RD, Reve W (2008) Sequential sorption of lead and cadmium in three tropical soils. Environ Pollut 155:132–140. doi:10.1016/j.envpol.2007.10.026

    Article  CAS  Google Scholar 

  • ATSDR (2004) Interaction profile: Arsenic, Cadmium, Chromium and Lead Agency for Toxic Substances and Disease Registry. Division of Toxicology, Atlanta, GA

    Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interf Sci 277:1–18. doi:10.1016/j.jcis.2004.04.005

    Article  CAS  Google Scholar 

  • Calabrese EJ et al (1989) How much soil do young children ingest—an epidemiologic study. Regul Toxicol Pharmacol 10:123–137. doi:10.1016/0273-2300(89)90019-6

    Article  CAS  Google Scholar 

  • Carbonell R (2013) Toxic waste threatens over 150,000 Australian sites, ABC News

  • Clever HL, Derrick ME, Johnson SA (1992) The solubility of some sparingly soluble salts of zinc and cadmium in water and in aqueous-electrolyte solutions. J Phys Chem Ref Data 21:941–1004

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons

  • Das S, Jean JS, Kar S (2013) Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. Ecotox Environ Safe 92:252–257. doi:10.1016/j.ecoenv.2013.02.016

    Article  CAS  Google Scholar 

  • Denys S et al (2012) In vivo validation of the Unified BARGE Method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ Sci Technol 46:6252–6260. doi:10.1021/Es3006942

    Article  CAS  Google Scholar 

  • Duggan MJ, Inskip MJ, Rundle SA, Moorcroft JS (1985) Lead in playground dust and on the hands of schoolchildren. Sci Total Environ 44:65–79. doi:10.1016/0048-9697(85)90051-8

    Article  CAS  Google Scholar 

  • Garcia-Manyes S, Jimenez G, Padro A, Rubio R, Rauret G (2002) Arsenic speciation in contaminated soils. Talanta 58:97–109

    Article  CAS  Google Scholar 

  • Juhasz AL et al (2009) Evaluation of SBRC-gastric and SBRC-intestinal methods for the prediction of in vivo relative lead bioavailability in contaminated soils. Environ Sci Technol 43:4503–4509. doi:10.1021/Es803238u

    Article  CAS  Google Scholar 

  • Komarek M, Vanek A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environ Pollut 172:9–22. doi:10.1016/j.envpol.2012.07.045

    Article  CAS  Google Scholar 

  • Liang S, Guan DX, Ren JH, Zhang M, Luo J, Ma LQ (2014) Effect of aging on arsenic and lead fractionation and availability in soils: coupling sequential extractions with diffusive gradients in thin-films technique. J Hazard Mater 273:272–279. doi:10.1016/j.jhazmat.2014.03.024

    Article  CAS  Google Scholar 

  • Liu HL, Zhu YN, Yu HX (2009) Solubility and stability of lead arsenates at 25 degrees C. J Environ Sci Heal A 44:1465–1475. doi:10.1080/10934520903217856

    Article  CAS  Google Scholar 

  • Lu AX, Zhang SZ, Shan XQ (2005) Time effect on the fractionation of heavy metals in soils. Geoderma 125:225–234. doi:10.1016/j.geoderma.2004.08.002

    Article  CAS  Google Scholar 

  • Makris KC, Quazi S, Nagar R, Sarkar D, Datta R, Sylvia VL (2008) In vitro model improves the prediction of soil arsenic bioavailability: worst-case scenario. Environ Sci Technol 42:6278–6284. doi:10.1021/es800476p

    Article  CAS  Google Scholar 

  • NEPC (2013) Guideline on health-based investigation levels. Schedule B7 in National Environment Protection (Assessment of Site Contamination) Measure. – Guideline on Investigation Levels for Soil and Groundwater Canberra, Australia

  • Ng JC, Juhasz A, Smith E, Naidu R (2015) Assessing the bioavailability and bioaccessibility of metals and metalloids. Environ Sci Pollut R 22:8802–8825. doi:10.1007/s11356-013-1820-9

    Article  Google Scholar 

  • Nightingale ER (1959) Phenomenological theory of ion solvation—effective radii of hydrated ions. J Phys Chem-Us 63:1381–1387. doi:10.1021/J150579a011

    Article  CAS  Google Scholar 

  • Rodriguez RR, Basta NT (1999) An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environ Sci Technol 33:642–649. doi:10.1021/Es980631h

    Article  CAS  Google Scholar 

  • Root RA, Hayes SM, Hammond CM, Maier RM, Chorover J (2015) Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Appl Geochem 62:131–149. doi:10.1016/j.apgeochem.2015.01.005

    Article  CAS  Google Scholar 

  • Roussel H, Waterlot C, Pelfrêne A, Pruvot C, Mazzuca M, Douay F (2010) Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Arch Environ Con Tox 58:945–954. doi:10.1007/s00244-009-9425-5

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430. doi:10.1021/Es950057z

    Article  CAS  Google Scholar 

  • Sanderson P, Naidu R, Bolan N, Bowman M, Mclure S (2012) Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Sci Total Environ 438:452–462. doi:10.1016/j.scitotenv.2012.08.014

    Article  CAS  Google Scholar 

  • Sarkar D, Makris KC, Parra-Noonan MT, Datta R (2007) Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environ Int 33:164–169. doi:10.1016/j.envint.2006.09.004

    Article  CAS  Google Scholar 

  • Serrano S, Garrido F, Campbell CG, Garcia-Gonzalez MT (2005) Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 124:91–104. doi:10.1016/j.geoderma.2004.04.002

    Article  CAS  Google Scholar 

  • Shaheen SM (2009) Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma 153:61–68. doi:10.1016/j.geoderma.2009.07.017

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Weber J, Juhasz AL (2008) The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Chemosphere 71:773–780. doi:10.1016/j.chemosphere.2007.10.012

    Article  CAS  Google Scholar 

  • Solaiman ARM, Meharg AA, Gault AG, Charnock JM (2009) Arsenic mobilization from iron oxyhydroxides is regulated by organic matter carbon to nitrogen (C:N) ratio. Environ Int 35:480–484. doi:10.1016/j.envint.2008.07.024

    Article  CAS  Google Scholar 

  • Sposito G (1994) Chemical equilibria and kinetics in soils. Oxford University Press on Demand

  • Tang X-Y, Zhu Y-G, Cui Y-S, Duan J, Tang L (2006a) The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environ Int 32:682–689. doi:10.1016/j.envint.2006.03.003

    Article  Google Scholar 

  • Tang XY, Cui YS, Duan J, Tang L (2008) Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils. J Hazard Mater 160:29–36. doi:10.1016/j.jhazmat.2008.02.076

    Article  CAS  Google Scholar 

  • Tang XY, Zhu YG, Cui YS, Duan J, Tang L (2006b) The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environ Int 32:682–689. doi:10.1016/j.envint.2006.03.003

    Article  Google Scholar 

  • Tang XY, Zhu YG, Shan XQ, McLaren R, Duan J (2007a) The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China. Chemosphere 66:1183–1190. doi:10.1016/j.chemosphere.2006.07.096

    Article  CAS  Google Scholar 

  • Tang XY, Zhu YG, Shan XQ, McLaren R, Duan J (2007b) The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China. Chemosphere 66:1183–1190. doi:10.1016/j.chemosphere.2006.07.096

    Article  CAS  Google Scholar 

  • Thavamani P, Megharaj M, Krishnamurti GSR, McFarland R, Naidu R (2011) Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: implications to bioremediation. Environ Int 37:184–189. doi:10.1016/j.envint.2010.08.017

    Article  CAS  Google Scholar 

  • USEPA (2007) Microwave assisted acid digestion of sediment, sludges, soils, and oils, United States Environmental Protection Agency, Washington, D.C

  • Wragg J et al (2011) An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci Total Environ 409:4016–4030. doi:10.1016/j.scitotenv.2011.05.019

    CAS  Google Scholar 

  • Xia Q, Peng C, Lamb D, Kader M, Mallavarapu M, Naidu R, Ng JC (2016a) Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method. Chemosphere 154:343–349. doi:10.1016/j.chemosphere.2016.03.133

    Article  CAS  Google Scholar 

  • Xia Q, Peng C, Lamb D, Mallavarapu M, Naidu R, Ng JC (2016b) Bioaccessibility of arsenic and cadmium assessed for in vitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction. Chemosphere 147:444–450. doi:10.1016/j.chemosphere.2015.12.091

    Article  CAS  Google Scholar 

  • Yang JK, Barnett MO, Jardine PM, Basta NT, Casteel SW (2002) Adsorption, sequestration, and bioaccessibility of As(V) in soils. Environ Sci Technol 36:4562–4569. doi:10.1021/Es011507s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) (project number 3.1.01.11-2). We thank Professor Mallavarapu’s research group for providing control samples. PhD scholarships for QX from the Chinese Scholarship Council, the University of Queensland and a CRC CARE top-up stipend are acknowledged. Entox/QAEHS is a partnership between Queensland Health and the University of Queensland.

BARGE—Bioaccessibility Research Group of Europe

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack C. Ng.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Lamb, D., Peng, C. et al. Interaction effects of As, Cd and Pb on their respective bioaccessibility with time in co-contaminated soils assessed by the Unified BARGE Method. Environ Sci Pollut Res 24, 5585–5594 (2017). https://doi.org/10.1007/s11356-016-8292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8292-7

Keywords

Navigation