Skip to main content
Log in

Investigating the nitrogen dioxide concentrations in the boundary layer by using multi-axis spectroscopic measurements and comparison with satellite observations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study emphasizes on near surface observation of chemically active trace gases such as nitrogen dioxide (NO2) over Islamabad on a regular basis. Absorption spectroscopy using backscattered extraterrestrial light source technique was used to retrieve NO2 differential slant column densities (dSCDs). Mini multi-axis-differential optical absorption spectroscopy (MAX-DOAS) instrument was used to perform ground-based measurements at Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Pakistan. Tropospheric vertical column densities (VCDs) of NO2 were derived from measured dSCDs by using geometric air mass factor approach. A case study was conducted to identify the impact of different materials (glass, tinted glass, and acrylic sheet of various thicknesses used to cover the instrument) on the retrieval of dSCDs. Acrylic sheet of thickness 5 mm was found most viable option for casing material as it exhibited negligible impact in the visible wavelength range. Tropospheric NO2 VCD derived from ground-based mini MAX-DOAS measurements exceeded two times the Pak-NEQS levels and showed a reasonable comparison (r 2 = 0.65, r = 0.81) with satellite observations (root mean square bias of 39 %) over Islamabad, Pakistan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad SS, Buker P, Emberson L, Shabbir R (2011) Monitoring nitrogen dioxide levels in urban areas in Rawalpindi, Pakistan. Water Air Soil Poll 220(1–4):141–150

    Article  CAS  Google Scholar 

  • Ali M, Athar M (2008) Air pollution due to traffic, air quality monitoring along three sections of national highway N-5. Pakistan Environ Monit Assess 136:219–226

    Article  CAS  Google Scholar 

  • Baidar S, Oetjen H, Coburn S, Dix B, Ortega I, Sinreich R, Volkamer R (2013) The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases. Atmos Meas Tech 6(3):719–739

    Article  CAS  Google Scholar 

  • Bobrowski N, Hönninger G, Galle B, Platt U (2003) Detection of bromine monoxide in a volcanic plume. Nature 423:273–276

    Article  CAS  Google Scholar 

  • Boersma K, Eskes HJ, Veefkind JP, Brinksma EJ, Sneep M, Oord GHJ, Bucsela EJ (2007) Near-real time retrieval of tropospheric NO2 from OMI. Atm Chem Phys 2013–2128. sref: 1680-7324/acp/2007-7-2103

  • Boersma KF, Eskes HJ, Dirksen RJ, van der A RJ, Veefkind JP (2011) An improved tropospheric NO2 column retrieval algorithm for the ozone monitoring instrument. Atmos. Meas. Tech. 4:1905–1928. doi:10.5194/amt-4-1905-2011

    Article  CAS  Google Scholar 

  • Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann OC, Vogel A, Hartmann M, Bovensmann H, Frerick J, Burrows JP (2003) Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region. J Photochem Photobiol A Chem 157:167–184

    Article  CAS  Google Scholar 

  • Brinksma EJ, Pinardi G, Volten H, Braak R, Richter A, Schönhardt A, Van Roozendael M, Fayt C, Hermans C, Dirksen RJ, Vlemmix T. (2008). The 2005 and 2006 DANDELIONS NO2 and aerosol intercomparison campaigns. J Geophys Res: Atmos 113(D16)

  • Cantrell CA (2008) Technical note: review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems. Atmos Chem Phys 8:5477–5487. doi:10.5194/acp-8-5477-2008

    Article  CAS  Google Scholar 

  • Chen D, Zhou B, Beirle S, Chen LM, Wagner T (2009) Tropospheric NO2column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation. Atmos Chem Phys 9:3641–3662

    Article  CAS  Google Scholar 

  • Coburn S, Dix B, Sinreich R, Volkamer R (2011) The CU ground MAX-DOAS instrument: characterization of RMS noise limitations and first measurements near Pensacola, FL of BrO, IO, and CHOCHO. Atmos. Meas. Tech. 4:2421–2439. doi:10.5194/amt-4-2421-2011

    Article  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  Google Scholar 

  • Fayt C, Van Roozendael M (2001) WinDOAS 2.1 software user manual. Available at: http://www.oma.be/GOME/GOMEBrO/ WinDOAS-SUM-210b.pdf.

  • Frins E, Osorio M, Casaballe N, Belsterli G, Wagner T, Platt U (2012) DOAS-measurement of the NO2 formation rate from NOx emissions into the atmosphere. Atmos. Meas. Tech. 5:1165–1172

    Article  CAS  Google Scholar 

  • Ghauri B, Lodhi A, Mansha M (2007) Development of baseline (air quality) data in Pakistan. Environ Monit Assess 127:237–252

    Article  CAS  Google Scholar 

  • Hermans C, Vandaele AC, Carleer M, Fally S, Colin R, Jenouvrier A, Coquart B, Merienne MF (1999) Absorption cross-sections of atmospheric constituents, NO2, O2, and H2O. Environ Sci Pollut Res 6:151–158

    Article  CAS  Google Scholar 

  • Hilboll A, Richter A, Burrows JP (2013) Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos Chem Phys 13:4145–4169

    Article  Google Scholar 

  • Hönninger G, Galle B, Platt U (2002) Observations of BrO and its vertical distribution during surface ozone depletion at alert. Atmos Environ 36:2481–2490

    Article  Google Scholar 

  • Hönninger G, von Friedeburg C, Platt U (2004) Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos Chem Phys 4:231–254. doi:10.5194/acp-4-231-2004

    Article  Google Scholar 

  • Hopke PK, Cohen DD, Begum BA (2008) Urban air quality in the Asian region. Sci Total Environ 404:103–112

    Article  CAS  Google Scholar 

  • Irie H, Takashima H, Kanaya Y, Boersma KF, Gast L, Wittrock F, Brunner D, Zhou Y, Van Roozendael M (2011) Eight-component retrievals from ground-based MAX-DOAS observations. Atmos. Measure. Tech. 4:1027–1044

    Article  CAS  Google Scholar 

  • Jahangir S, Ahmad SS, Aziz N, Shah MTA (2013) Spatial variation of nitrogen dioxide concentration in private and public hospitals of Rawalpindi and Islamabad, Pakistan. J Int Environ Appl Sci 8(1):16–24

  • Jin J, Ma J, Lin W, Zhao H, Shaiganfar R, Beirle S, Wagner T (2016) MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China. Atmos Environ 133:12–25

  • Johansson M, Galle B, Yu TL, Tang D, Chen H, Li J, Li X, Zhang Y (2008) Quantification of total emission of air pollutants from Beijing using mobile mini-DOAS. Atmos Environ 42:6926–6933

    Article  CAS  Google Scholar 

  • Kalabokas PD, Papayannis AD, Tsaknakis G, Ziomas I (2012) A study on the atmospheric concentrations of primary and secondary air pollutants in the Athens basin performed by DOAS and DIAL measuring techniques. Sci Total Environ 414:556–563

    Article  CAS  Google Scholar 

  • Kanaya Y, Irie H, Takashima H, Iwabuchi H, Akimoto H, Sudo K, Gu M, Chong J, Kim YJ, Lee H, Li A (2014) Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations. Atmos Chem Phys 14:7909–7927

    Article  Google Scholar 

  • Khattak P, Khokhar MF, Yasmin N (2014a) Spatio-temporal analyses of atmospheric sulfur dioxide column densities over Pakistan by using SCIAMACHY data. ISSN: 1680–8584 print / 2075–1410 online, doi:10.4210/aaqr.2013.12.0357, accepted 27 May, 2014

  • Khattak P, Khokhar MF, Yasmin N (2014b) Spatio-temporal analyses of atmospheric sulfur dioxide column densities over Pakistan by using SCIAMACHY data. Aerosol Air Qual Res 14:1883–1896. doi:10.4209/aaqr.2013.12.0357

    CAS  Google Scholar 

  • Khokhar MF, Frankenberg C, Van Roozendael M, Beirle S, Kuhl S, Richter A, Platt U, Wagner T (2005) Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996–2002. Adv Space Res 36:879–887

    Article  CAS  Google Scholar 

  • Khokhar MF, Platt U, Wagner T (2008) Temporal trends of anthropogenic SO2 emitted by non-ferrous metal smelters in Peru and Russia estimated from satellite observations. Atmos. Chem. Phys. Discuss. 8:17393–17422

    Article  Google Scholar 

  • Khokhar MF, Fatima N, Yasmin N, Beirle S, Wagner T (2015a) Detection of trends and seasonal variation in tropospheric nitrogen dioxide over Pakistan. Aerosol Air Qual Res 15:2508–2524

    Article  CAS  Google Scholar 

  • Khokhar MF, Khalid T, Yasmin N, Desmedt I (2015b) Spatio-temporal analyses of formaldehyde over Pakistan by using SCIAMACHY and GOME-2 observations. Aerosol Air Qual Res 15:1760–1773

    Article  CAS  Google Scholar 

  • Khokhar MF, Mehdi H, Abbas Z, Javed Z (2016a) Temporal assessment of NO2 pollution levels in urban centers of Pakistan by employing ground-based and satellite observations. Aerosol Air Qual Res 16:1854–1867

    Article  Google Scholar 

  • Khokhar MF, Naweed SI, Butt JK, Abbas Z (2016b) Comparative analysis of atmospheric glyoxal column densities retrieved from MAX-DOAS observations in Pakistan and during MAD-CAT field campaign in Mainz, Germany. Atmosphere 7:68. doi:10.3390/atmos7050068

    Article  Google Scholar 

  • Khokhar MF, Yasmin N, Chishtie F, Shahid I (2016c) Temporal variability and characterization of aerosols across the Pakistan region during the winter fog periods. Atmosphere 7:67. doi:10.3390/atmos7050067

    Article  Google Scholar 

  • Kim HC, Lee P, Judd L, Pan L, Lefer B (2016) OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution. Geosci Model Dev 9(3):1111–1123

    Article  Google Scholar 

  • Kramer LJ, Leigh RJ, Remedios JJ, Monks PS (2008a) Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area. J Geophys Res 113:D16S39. doi:10.1029/2007jd009168

    Article  Google Scholar 

  • Kramer LJ, Leigh RJ, Remedios JJ, Monks PS. (2008b). Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area. J Geophys Res: Atmos 113(D16)

  • Kraus S (2006) DOASIS, a framework design for DOAS, PhD-thesis, University of Mannheim. Available at: http://hci.iwr.uni-heidelberg.de/publications/dip/2006/Kraus PhD 2006.pdf.

  • Kurucz RL, Furenlid I, Brault J, and Testerman L (1984) Solar flux atlas from 296 nm to 1300 nm, National Solar Observatory Atlas No. 1

  • Levelt PF, van den Oord GHJ, Dobber MR, Malkki A, Visser H, de Vries J, Stammes P, Lundell J, Saari (2006) The ozone monitoring instrument IEEE T. Geosci Remote Sens 44:1093–1101

    Article  Google Scholar 

  • Li X, Brauers T, Hofzumahaus A, Lu K, Li YP, Shao M, Wagner T, Wahner A (2013) MAX-DOAS measurements of NO2, HCHO, and CHOCHO at a rural site in Southern China. Atmos Chem Phys 13(4):2133

    Article  Google Scholar 

  • Ma JZ, Beirle S, Jin JL, Shaiganfar R, Yan P, Wagner T (2013) Tropospheric NO2 vertical column densities over Beijing: results of the first three years of ground-based MAX-DOAS measurements (2008–2011) and satellite validation. Atmos Chem Phys 13:1547–1567

    Article  Google Scholar 

  • Mendolia D, D'Souza RJ, Evans GJ, Brook J (2013) Comparison of tropospheric NO2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements. Atmospheric Measurement Techniques 6(10):2907–2924

    Article  Google Scholar 

  • Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. New Eng J Med 356:447–458

    Article  CAS  Google Scholar 

  • Parekh P, Khwaja H, Khan A, Naqvi R, Malik A, Shah S, Khan K, Hussain G (2001) Ambient air quality of two metropolitan cities of Pakistan and its health implications. Atmospheric Environ 35:5971–5978

    Article  CAS  Google Scholar 

  • Pinardi G, Hendrick F, Clemer K, Lambert JC, Bai J, and Van Roozendael M (2008) On the use of the MAX-DOAS technique for the validation of tropospheric NO2 column measurements from satellite. Proc. Eumetsat Conf., ISBN 978-92-9110-082-8

  • Platt U, Stutz J (2008) Differential optical absorption spectroscopy, principles, and applications. Springer, Berlin

  • Pope CA (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who is at risk. Environ Health Perspect 108:713–723

    Article  CAS  Google Scholar 

  • Prasad AK, Singh RP, Kafatos M (2012) Influence of coal-based thermal power plants on the spatial-temporal variability of tropospheric NO2 column over India. Environ Monit Assess 184:1891–1907. doi:10.1007/s10661-011-2087-6

    Article  CAS  Google Scholar 

  •  Rafiq M, Khan M (2014) The health costs of the brick kilns emissions in Peshawar: a policy analysis. Curr World Environ 9(3):591–601

    Article  Google Scholar 

  • Rothman LS, Jacquemart D, Barbe A, Benner DC, Birk M, Brown LR, Carleer MR, Chackerian C Jr, Chance K, Coudert LH, Dana V, Devi VM, Flaud JM, Gamache RR, Goldman A, Hartmann JM, Jucks KW, Maki AG, Mandin JY, Massie ST, Orphal J, Perrin A, Rinsland CP, Smith MAH, Tennyson J, Tolchenov RN, Toth RA, Vander Auwera J, Varanasi P, Wagner G (2005) The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Ra 96:139–204. doi:10.1016/j.jqsrt.2004.10.008

    Article  CAS  Google Scholar 

  • Schwartz J (2001) Air pollution and blood markers of cardiovascular risk. Environ Health Perspect 109:405–409

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2008) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New York ISBN: 978-0-471-72018-8. 1232 pages

    Google Scholar 

  • Shabbir R, Ahmad SS (2010) Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model. Energy 35:2323–2332

    Article  CAS  Google Scholar 

  • Shabbir Y., Khokhar MF, Shaiganfar R, Wagner T (2015) Spatial variance and assessment of nitrogen dioxide pollution in major cities of Pakistan along N5-highway. J Environ Sci. JES-D-15-00190R2 (in press)

  • Shaiganfar R, Beirle S, Sharma M, Chauhan A, Singh RP, Wagner T (2011) Estimation of NOx emissions from Delhi using car MAX-DOAS observations and comparison with OMI satellite data. Atmos Chem Phys 11:10871–10887

    Article  CAS  Google Scholar 

  • van der A RJ, Eskes HJ, Boersma KF, Van Noije TP, van Roozendael M, De Smedt I, Peters DH, Meijer EW (2008) Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. Journal of Geophy Res 113:D04302. doi:10.1029/2007JD009021

    Google Scholar 

  • van Roozendael M, Fayt C, Post P, Hermans C, Lambert, JC (2004) Retrieval of BrO and NO2 from UV-visible observations, in: Sounding the troposphere from space: a new era for atmospheric chemistry edited by: Borell P, Borrell PM, Burrows JP, Platt U, Springer, Heidelberg, ISBN 3–540–40873-8

  • Vandaele AC, Hermans C, Simon PC, Carleer M, Colins R, Fally S, Mérienne MF, Jenouvrier A, Coquart B (1998) Measurements of the NO2 absorption cross-sections from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K. J Quant Spectrosc Radiat Transf 59:171–184. doi:10.1016/S0022-4073(97)00168-4

    Article  CAS  Google Scholar 

  • Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina LT, Worsnop DR, Molina MJ (2006) Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophy Res Lett 33:L17811. doi:10.1029/2006gl026899

    Article  Google Scholar 

  • Volkamer R, Sinreich R, Ortega I, Dix B, Coburn S, Oetjen H, Baidar S (2013) The CU airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases. Atmos. Meas. Tech. 6:719–739. doi:10.5194/amt-6-719-2013

    Article  Google Scholar 

  • US-EPA: Guideline for reporting of daily air quality - Air Quality Index (1999) Office for Air Quality Planning and Standards, United States Environmental Protection Agency, North Carolina, USA. http://www.epa.gov/ttn/oarpg/t1/memoranda/rg701.pdf. Accessed Dec 2013

  • Wagner T, Beirle S, Friedeburg CV, Hollwedel J, Kraus S, Wenig M, Wilms-Grabe W, Kühl S, Platt U (2002) Monitoring of trace gas emissions from space: tropospheric abundances of BrO, NO2, H2CO, SO2, H2O, O2, and O4 as measured by GOME. Air pollution 2002. WIT Press 10:463–472

    Google Scholar 

  • Wagner T, Richter A, von Friedeburg C, Wenig M, Platt U (2003) Case studies for the investigation of cloud sensitive parameters as measured by GOME. TROPOSAT final report. Springer, Heidelberg

  • Wagner T, Dix BV, Friedeburg CV, Frieß U, Sanghavi S, Sinreich R, Platt U (2004) MAX-DOAS O4 measurements—a new technique to derive information on atmospheric aerosols. (I) Principles and information content. J Geophys Res 109:D22205. doi:10.1029/2004JD004904

    Article  Google Scholar 

  • Wagner T, Ibrahim O, Shaiganfar R, Platt U (2010) Mobile max-DOAS observations of tropospheric trace gases, atmospheric measurement techniques. Atmos. Meas. Tech. 3:129–140

    Article  CAS  Google Scholar 

  • Wagner T, Beirle S, Brauers T, Deutschmann T, Frieß U, Hak C, Halla JD, Heue KP, Junkermann W, Li X, Platt U (2011) Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets. Atmos Meas Tech 4:2685–2715. doi:10.5194/amt-4-2685-2011

    Article  CAS  Google Scholar 

  • Wang Y, Lampel J, Xie PH, Beirle S, Li A, Wu DX, Wagner T (2016) Ground-based MAX-DOAS observations of tropospheric aerosols, NO2, SO2 and HCHO in Wuxi, China, from 2011 to 2014. Atmos Chem Phys Discuss 2016. doi:10.5194/acp-2016-282

  • WHO - World Health Organization (2005) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide (summary of risk assessment) available at http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/. Accessed 20 Oct 2016

  • WHO - World Health Organization Report (2014) Ambient (outdoor) air pollution in cities database 2014, Published on 7th May 2014 Press Release. http://www.who.int/gh o/phe/outdoor_air_pollution/exposure/en/. Last Access 7 March 2016

  • Wittrock F, Oetjen H, Richter A, Fietkau S, Medeke T, Rozanov A, Burrows JP (2004) MAX-DOAS measurements of atmospheric trace gases in Ny-Alesund—radiative transfer studies and their application. Atmos Chem Phys 4:955–966. doi:10.5194/acp-4-955-2004

    Article  CAS  Google Scholar 

  • Wiwatanadate P, Liwsrisakun C (2011) Acute effects of air pollution on peak expiratory flow rates and symptoms among asthmatic patients in Chiang Mai, Thailand. Int J Hygiene Environ Health 214:251–257

    Article  CAS  Google Scholar 

  • Zafar L, Ahmad SS, Waqar AA, Ali SS (2012) Temporal variations in nitrogen dioxide concentration due to vehicular emissions in Islamabad capital territory & Rawalpindi. Sci Int (Lahore) 24(3):265–268

    CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the TEMIS project for the free use of tropospheric NO2 column data from the OMI instrument from their web page (www.temis.nland details) about the retrieval and error analyses. We do acknowledge the Level 2 OMI data downloaded from the NASA GES DISC website (http://disc.sci.gsfc.nasa.gov/Aura) and the Level 1 and Atmosphere Archive and Distribution System (LAADS) for providing access to MODIS Level 1, courtesy of the online Data Pool at the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov/data_access). Very special gratitude goes to MPI-Ch Mainz Germany for providing mini MAX-DOAS instrument and to Prof. Thomas Wagner for technical guidance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Fahim Khokhar or Khalid Rehman Hakeem.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhar, M.F., Nisar, M., Noreen, A. et al. Investigating the nitrogen dioxide concentrations in the boundary layer by using multi-axis spectroscopic measurements and comparison with satellite observations. Environ Sci Pollut Res 24, 2827–2839 (2017). https://doi.org/10.1007/s11356-016-7907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7907-3

Keywords

Navigation