Skip to main content
Log in

Satellite measurements of aerosol optical depth and carbon monoxide and comparison with ground data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Satellite data of aerosol optical depths (AODs) from the moderate resolution imaging spectroradiometer (MODIS) and carbon monoxide (CO) columns from the measurements of pollution in the troposphere (MOPITT) were collected for the study in Northern Thailand. Comparative analyses were conducted of MODIS (Terra and Aqua) AODs with ground particulate matter with diameter below 10 microns (PM10) concentrations and MOPITT CO surface/total columns with ground CO concentrations for 2014–2017. Temporal variations in both the satellite and ground datasets were in good agreement. High levels of air pollutants were common during March–April. The annual analysis of both satellite and ground datasets revealed the highest levels of air pollutants in 2016 and the lowest levels in 2017. The AODs and PM10 concentrations were at higher levels in the morning than in the afternoon. The comparison between satellite products showed that AODs correlated better with the CO total columns than the CO surface columns. The regression analysis presented better performance of Aqua AODs-PM10 than Terra AODs-PM10 with correlation coefficients (r) of 0.72–0.83 and 0.57–0.79, respectively. Ground CO concentrations correlated better with MOPITT CO surface columns (r = 0.65–0.73) than with CO total columns (r = 0.56–0.72). The r values of satellite and ground datasets were greatest when the analysis was restricted to November–March (dry weather periods with possible low mixing height (MH)). Overall, the results suggested that the relationships between satellite and ground data can be used to develop predictive models for ground PM10 and CO in northern Thailand, particularly during air pollution episodes located where ground monitoring stations are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arunrat, N., Pumijumnong, N., & Sereenonchai, S. (2018). Air-pollutant emissions from agricultural burning in Mae Chaem basin, Chiang Mai Province, Thailand. Atmosphere, 9(4), 145. https://doi.org/10.3390/atmos9040145.

    Article  CAS  Google Scholar 

  • Barnes, W. L., Pagano, T. S., & Salomonson, V. V. (1998). Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1088–1100. https://doi.org/10.1109/36.700993.

    Article  Google Scholar 

  • Bey, I., Jacob, D. J., Logan, J. A., & Yantosca, R. M. (2001). Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets. Journal of Geophysical Research, 106(D19), 23097–23113. https://doi.org/10.1029/2001JD000806.

    Article  CAS  Google Scholar 

  • Buchholz, R. R., Deeter, M. N., Worden, H. M., Gille, J., Edwards, D. P., Hannigan, J. W., Jones, N. B., Paton-Walsh, C., Griffith, D. W. T., Smale, D., Robinson, J., Strong, K., Conway, S., Sussmann, R., Hase, F., Blumenstock, T., Mahieu, E., & Langerock, B. (2017). Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC. Atmospheric Measurement Techniques, 10(5), 1927–1956. https://doi.org/10.5194/amt-10-1927-2017.

    Article  CAS  Google Scholar 

  • Chew, B. N., Campbell, J. R., Hyer, E. J., Salinas, S. V., Reid, J. S., Welton, E. J., Holben, B. N., & Liew, S. C. (2016). Relationship between aerosol optical depth and particulate matter over Singapore: effects of aerosol vertical distributions. Aerosol and Air Quality Research, 16(11), 2818–2830. https://doi.org/10.4209/aaqr.2015.07.0457.

    Article  CAS  Google Scholar 

  • Crutzen, P. J., & Zimmermann, P. H. (1991). The changing photochemistry of the troposphere. Tellus B, 43(4), 136–151. https://doi.org/10.1034/j.1600-0889.1991.t01-1-00012.x.

    Article  Google Scholar 

  • Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. P., Gille, J. C., Warner, J. X., Khattatov, B., Ziskin, D., Lamarque, J. F., Ho, S. P., Yudin, V., Attie, J. L., Packman, D., Chen, J., Mao, D., Drummond, J. R., Novelli, P., & Sachse, G. (2004). Evaluation of operational radiances for the measurements of pollution in the troposphere (MOPITT) instrument CO thermal band channels. Journal of Geophysical Research, 109, D03308. https://doi.org/10.1029/2003JD003970.

    Article  CAS  Google Scholar 

  • Deeter, M. N., Edwards, D. P., Gille, J. C., & Drummond, J. R. (2007). Sensitivity of MOPITT observations to carbon monoxide in the lower troposphere. Journal of Geophysical Research, 112, D24306. https://doi.org/10.1029/2007JD008929.

    Article  CAS  Google Scholar 

  • Deeter, M. N., Edwards, D. P., Gille, J. C., Emmons, L. K., Francis, G., Ho, S.-P., et al. (2010). The MOPITT version 4 CO product: algorithm enhancements, validation, and long-term stability. Journal of Geophysical Research, 115, D07306. https://doi.org/10.1029/2009JD013005.

    Article  CAS  Google Scholar 

  • Dinoi, A., Perrone, M. R., & Burlizzi, P. (2010). Application of MODIS products for air quality studies over Southeastern Italy. Remote Sensing, 2, 1767–1796. https://doi.org/10.3390/rs2071767.

    Article  Google Scholar 

  • Drummond, J. R., Zou, J., Nichitiu, F., Kar, J., Deschambaut, R., & Hackett, J. (2010). A review of 9-year performance and operation of the MOPITT instrument. Advances in Space Research, 45(6), 760–774. https://doi.org/10.1016/j.asr.2009.11.019.

    Article  CAS  Google Scholar 

  • Duncan, B. N., Prados, A. I., Lamsal, L. N., Liu, Y., Streets, D. G., Gupta, P., Hilsenrath, E., Kahn, R. A., Nielsen, J. E., Beyersdorf, A. J., Burton, S. P., Fiore, A. M., Fishman, J., Henze, D. K., Hostetler, C. A., Krotkov, N. A., Lee, P., Lin, M., Pawson, S., Pfister, G., Pickering, K. E., Pierce, R. B., Yoshida, Y., & Ziemba, L. D. (2014). Satellite data of atmospheric pollution for U.S. air quality applications: examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 94, 647–662. https://doi.org/10.1016/j.atmosenv.2014.05.061.

    Article  CAS  Google Scholar 

  • Edwards, D. P., Emmons, L. K., Hauglustaine, D. A., Chu, D. A., Gille, J. C., Kaufman, Y. J., et al. (2004). Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. Journal of Geophysical Research, 109, D24202. https://doi.org/10.1029/2004JD004727.

    Article  CAS  Google Scholar 

  • Emmons, L. K., Deeter, M. N., Gille, J. C., Edwards, D. P., Attié, J.-L., Warner, J., et al. (2004). Validation of measurements of pollution in the troposphere (MOPITT) CO retrievals with aircraft in situ profiles. Journal of Geophysical Research, 109, D03309. https://doi.org/10.1029/2003JD004101.

    Article  CAS  Google Scholar 

  • Emmons, L. K., Pfister, G. G., Edwards, D. P., Gille, J. C., Sachse, G., Blake, D., et al. (2007). Measurements of pollution in the troposphere (MOPITT) validation exercises during summer 2004 field campaigns over North America. Journal of Geophysical Research, 112, D12S02. https://doi.org/10.1029/2006JD007833.

    Article  CAS  Google Scholar 

  • Emmons, L. K., Edwards, D. P., Deeter, M. N., Gille, J. C., Campos, T., Nédélec, P., Novelli, P., & Sachse, G. (2009). Measurements of pollution in the troposphere (MOPITT) validation through 2006. Atmospheric Chemistry and Physics, 9, 1795–1803. https://doi.org/10.5194/acp-9-1795-2009.

    Article  CAS  Google Scholar 

  • Engel-Cox, J. A., Holloman, C. H., Coutant, B. W., & Hoff, R. M. (2004). Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmospheric Environment, 38(16), 2495–2509. https://doi.org/10.1016/j.atmosenv.2004.01.039.

    Article  CAS  Google Scholar 

  • Engel-Cox, J. A., Hoff, R. M., Rogers, R., Dimmick, F., Rush, A. C., Szykman, J. J., al-Saadi, J., Chu, D. A., & Zell, E. R. (2006). Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmospheric Environment, 40(40), 8056–8067. https://doi.org/10.1016/j.atmosenv.2006.02.039.

    Article  CAS  Google Scholar 

  • Engel-Cox, J. A., Huff, A. K., Kanabkaew, T., & Kim Oanh, N. T. (2012). Satellite tools for air quality management with focus on particulate matter. In N. T. Kim Oanh (Ed.), Integrated air quality management: Asian case studies (pp. 125–148). Boca Raton: CRC Press. https://doi.org/10.1201/b12235.

    Chapter  Google Scholar 

  • Fann, N., Lamson, A. D., Anenberg, S. C., Wesson, K., Risley, D., & Hubbell, B. J. (2012). Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Analysis, 32(1), 81–95. https://doi.org/10.1111/j.1539-6924.2011.01630.x.

    Article  Google Scholar 

  • Gautam, R., Hsu, N. C., Eck, T. F., Holben, B. N., Janjai, S., Jantarach, T., Tsay, S. C., & Lau, W. K. (2013). Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment, 78, 51–59. https://doi.org/10.1016/j.atmosenv.2012.05.038.

    Article  CAS  Google Scholar 

  • Guo, Y., Feng, N., Christopher, S. A., Kang, P., Zhan, F. B., & Hong, S. (2014). Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS. International Journal of Remote Sensing, 35(17), 6522–6544. https://doi.org/10.1080/01431161.2014.958245.

    Article  Google Scholar 

  • Guo, J., Xia, F., Zhang, Y., Liu, H., Li, J., Lou, M., He, J., Yan, Y., Wang, F., Min, M., & Zhai, P. (2017a). Impact of diurnal variability and meteorological factors on the PM2.5-AOD relationship: implications for PM2.5 remote sensing. Environmental Pollution, 221, 94–104. https://doi.org/10.1016/j.envpol.2016.11.043.

    Article  CAS  Google Scholar 

  • Guo, Y., Tang, Q., Gong, D.-Y., & Zhang, Z. (2017b). Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sensing of Environment, 198, 140–149. https://doi.org/10.1016/j.rse.2017.06.001.

    Article  Google Scholar 

  • Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y., & Kumar, N. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30), 5880–5892. https://doi.org/10.1016/j.atmosenv.2006.03.016.

    Article  CAS  Google Scholar 

  • Gupta, P., Christopher, S. A., Box, M. A., & Box, G. P. (2007). Multi year satellite remote sensing of particulate matter air quality over Sydney, Australia. International Journal of Remote Sensing, 28(20), 4483–4498. https://doi.org/10.1080/01431160701241738.

    Article  Google Scholar 

  • Han, W., & Tong, L. (2019). Satellite-based estimation of daily ground-level PM2.5 concentrations over urban agglomeration of Chengdu Plain. Atmosphere, 10(5), 245. https://doi.org/10.3390/atmos10050245.

    Article  Google Scholar 

  • He, Q., & Huang, B. (2018a). Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sensing of Environment, 206, 72–83. https://doi.org/10.1016/j.rse.2017.12.018.

    Article  Google Scholar 

  • He, Q., & Huang, B. (2018b). Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environmental Pollution, 236, 1027–1037. https://doi.org/10.1016/j.envpol.2018.01.053.

    Article  CAS  Google Scholar 

  • Jiang, Z., Worden, J. R., Worden, H., Deeter, M., Jones, D. B. A., Arellano, A. F., & Henze, D. K. (2017). A 15-year record of CO emissions constrained by MOPITT CO observations. Atmospheric Chemistry and Physics, 17(7), 4565–4583. https://doi.org/10.5194/acp-17-4565-2017.

    Article  CAS  Google Scholar 

  • Kanabkaew, T. (2013). Prediction of hourly particulate matter concentrations in Chiangmai, Thailand using MODIS aerosol optical depth and ground-based meteorological data. EnvironmentAsia, 6(2), 65–70.

    Google Scholar 

  • Karimian, H., Li, Q., Li, C., Jin, L., Fan, J., & Li, Y. (2016). An improved method for monitoring fine particulate matter mass concentrations via satellite remote sensing. Aerosol and Air Quality Research, 16(4), 1081–1092. https://doi.org/10.4209/aaqr.2015.06.0424.

    Article  CAS  Google Scholar 

  • Kiatwattanacharoen, S., Prapamontol, T., Singharat, S., Chantara, S., & Thavornyutikarn, P. (2017). Exploring the sources of PM10 burning-season haze in Northern Thailand using nuclear analytical techniques. Chiang Mai University Journal of Natural Sciences, 16(4), 307–325. https://doi.org/10.12982/CMUJNS.2017.0025.

    Article  Google Scholar 

  • Kim Oanh, N. T., & Leelasakultum, K. (2011). Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning. Science of the Total Environment, 409(11), 2261–2271. https://doi.org/10.1016/j.scitotenv.2011.02.022.

    Article  CAS  Google Scholar 

  • Kliengchuay, W., Cooper Meeyai, A., Worakhunpiset, S., & Tantrakarnapa, K. (2018). Relationships between meteorological parameters and particulate matter in Mae Hong Son Province, Thailand. International Journal of Environmental Research and Public Health, 15(12), 2801. https://doi.org/10.3390/ijerph15122801.

    Article  CAS  Google Scholar 

  • Koelemeijer, R. B. A., Homan, C. D., & Matthijsen, J. (2006). Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment, 40(27), 5304–5315. https://doi.org/10.1016/j.atmosenv.2006.04.044.

    Article  CAS  Google Scholar 

  • Kumar, N., Chu, A., & Foster, A. (2007). An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmospheric Environment, 41(21), 4492–4503. https://doi.org/10.1016/j.atmosenv.2007.01.046.

    Article  CAS  Google Scholar 

  • Laken, B., & Shahbaz, T. (2014). Satellite-detected carbon monoxide pollution during 2000–2012: examining global trends and also regional anthropogenic periods over China, the EU and the USA. Climate, 2(1), 1–16. https://doi.org/10.3390/cli2010001.

    Article  Google Scholar 

  • Lalitaporn, P. (2017). Temporal and spatial variability of tropospheric NO2 columns retrieved from OMI satellite data and comparison with ground based information in Thailand. Engineering and Applied Science Research, 44(2), 227–234. https://doi.org/10.14456/easr.2017.35.

    Article  Google Scholar 

  • Lalitaporn, P. (2018). Long-term assessment of carbon monoxide using MOPITT satellite and surface data over Thailand. Engineering and Applied Science Research, 45(2), 132–139. https://doi.org/10.14456/easr.2018.17.

    Article  Google Scholar 

  • Lalitaporn, P., & Boonmee, T. (2019). Analysis of tropospheric nitrogen dioxide using satellite and ground based data over Northern Thailand. Engineering Journal, 23(6), 19–35. https://doi.org/10.4186/ej.2019.23.6.19.

    Article  CAS  Google Scholar 

  • Lalitaporn, P., Kurata, G., Matsuoka, Y., Thongboonchoo, N., & Surapipith, V. (2013). Long-term analysis of NO2, CO, and AOD seasonal variability using satellite observations over Asia and intercomparison with emission inventories and model. Air Quality, Atmosphere and Health, 6(4), 655–672. https://doi.org/10.1007/s11869-013-0205-z.

    Article  CAS  Google Scholar 

  • Leelasakultum, K., & Kim Oanh, N. T. (2017). Mapping exposure to particulate pollution during severe haze episode using improved MODIS AOT-PM10 regression model with synoptic meteorology classification. GeoHealth, 1(4), 165–179. https://doi.org/10.1002/2017GH000059.

    Article  Google Scholar 

  • Levy, R. C., Remer, L. A., & Dubovik, O. (2007a). Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land. Journal of Geophysical Research, 112, D13210. https://doi.org/10.1029/2006JD007815.

    Article  CAS  Google Scholar 

  • Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007b). Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. Journal of Geophysical Research, 112, D13211. https://doi.org/10.1029/2006JD007811.

    Article  CAS  Google Scholar 

  • Li, L., & Liu, Y. (2011). Space-borne and ground observations of the characteristics of CO pollution in Beijing, 2000–2010. Atmospheric Environment, 45(14), 2367–2372. https://doi.org/10.1016/j.atmosenv.2011.02.026.

    Article  CAS  Google Scholar 

  • Liu, Y., Paciorek, C. J., & Koutrakis, P. (2009). Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 117(6), 886–892. https://doi.org/10.1289/ehp.0800123.

    Article  Google Scholar 

  • Liu, H., Guo, J., Koren, I., Altaratz, O., Dagan, G., Wang, Y., Jiang, J. H., Zhai, P., & Yung, Y. L. (2019). Non-monotonic aerosol effect on precipitation in convective clouds over tropical oceans. Scientific Reports, 9(1), 7809. https://doi.org/10.1038/s41598-019-44284-2.

    Article  CAS  Google Scholar 

  • Muhammad, Z., & Nguyen Thi, K. O. (2015). Relationship of MISR component AODs with black carbon and other ground monitored particulate matter composition. Atmospheric Pollution Research, 6(1), 62–69. https://doi.org/10.5094/APR.2015.008.

    Article  CAS  Google Scholar 

  • Park, H. Y., Bae, S., & Hong, Y.-C. (2013). PM10 exposure and non-accidental mortality in Asian populations: a meta-analysis of time-series and case-crossover studies. Journal of Preventive Medicine and Public Health, 46(1), 10–18. https://doi.org/10.3961/jpmph.2013.46.1.10.

    Article  Google Scholar 

  • Pelletier, B., Santer, R., & Vidot, J. (2007). Retrieving of particulate matter from optical measurements: a semiparametric approach. Journal of Geophysical Research, 112, D06208. https://doi.org/10.1029/2005JD006737.

    Article  Google Scholar 

  • Phairuang, W., Suwattiga, P., Chetiyanukornkul, T., Hongtieab, S., Limpaseni, W., Ikemori, F., Hata, M., & Furuuchi, M. (2019). The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environmental Pollution, 247, 238–247. https://doi.org/10.1016/j.envpol.2019.01.001.

    Article  CAS  Google Scholar 

  • Pollution Control Department (PCD). (2019). Booklet on Thailand State of Pollution 2018. Bangkok: S. Mongkon Press Limited Partnership.

    Google Scholar 

  • Pongkiatkul, P., & Kim Oanh, N. T. (2012). Receptor modeling for air pollution source apportionment study. In N. T. Kim Oanh (Ed.), Integrated air quality management: Asian case studies (pp. 64–95). Boca Raton: CRC Press. https://doi.org/10.1201/b12235.

    Chapter  Google Scholar 

  • Pongpiachan, S., & Paowa, T. (2015). Hospital out-and-in-patients as functions of trace gaseous species and other meteorological parameters in Chiang Mai, Thailand. Aerosol and Air Quality Research, 15(2), 479–493. https://doi.org/10.4209/aaqr.2013.09.0293.

    Article  CAS  Google Scholar 

  • Pothirat, C., Chaiwong, W., Liwsrisakun, C., Bumroongkit, C., Deesomchok, A., Theerakittikul, T., Limsukon, A., Tajaroenmuang, P., & Phetsuk, N. (2019). Influence of particulate matter during seasonal smog on quality of life and lung function in patients with chronic obstructive pulmonary disease. International Journal of Environmental Research and Public Health, 16(1), 106. https://doi.org/10.3390/ijerph16010106.

    Article  CAS  Google Scholar 

  • Sathitkunarat, S., Wongwises, P., Pan-Aram, R., & Zhang, M. (2006). Carbon monoxide emission and concentration models for Chiang Mai urban area. Advances in Atmospheric Sciences, 23(6), 901–908. https://doi.org/10.1007/s00376-006-0901-9.

    Article  CAS  Google Scholar 

  • Schaap, M., Timmermans, R. M. A., Koelemeijer, R. B. A., de Leeuw, G., & Builtjes, P. J. H. (2008). Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmospheric Environment, 42(9), 2187–2197. https://doi.org/10.1016/j.atmosenv.2007.11.044.

    Article  CAS  Google Scholar 

  • Schaap, M., Apituley, A., Timmermans, R. M. A., Koelemeijer, R. B. A., & de Leeuw, G. (2009). Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmospheric Chemistry and Physics, 9(3), 909–925. https://doi.org/10.5194/acp-9-909-2009.

    Article  CAS  Google Scholar 

  • Segura, S., Estellés, V., Utrillas, M. P., & Martínez-Lozano, J. A. (2017). Long term analysis of the columnar and surface aerosol relationship at an urban European coastal site. Atmospheric Environment, 167, 309–322. https://doi.org/10.1016/j.atmosenv.2017.08.012.

    Article  CAS  Google Scholar 

  • Seiler, W., Giehl, H., Brunke, E.-G., & Halliday, E. (1984). The seasonality of CO abundance in the Southern Hemisphere. Tellus B., 36B, 219–231. https://doi.org/10.1111/j.1600-0889.1984.tb00244.x.

    Article  CAS  Google Scholar 

  • Sirimongkonlertkul, N., Upayokhin, P., & Phonekeo, V. (2013). Multi-temporal analysis of haze problem in northern Thailand: a case study in Chiang Rai Province. Kasetsart Journal (Natural Science), 47(5), 768–780.

    Google Scholar 

  • Sooktawee, S., Humphries, U., Patpai, A., Kongsong, R., Boonyapitak, S., & Piemyai, N. (2015). Visualization and interpretation of PM10 monitoring data related to causes of haze episodes in Northern Thailand. Applied Environmental Research, 37(2), 33–48. https://doi.org/10.14456/aer.2015.14.

    Article  Google Scholar 

  • Sukitpaneenit, M., & Kim Oanh, N. T. (2014). Satellite monitoring for carbon monoxide and particulate matter during forest fire episodes in Northern Thailand. Environmental Monitoring and Assessment, 186(4), 2495–2504. https://doi.org/10.1007/s10661-013-3556-x.

    Article  CAS  Google Scholar 

  • Thepnuan, D., Chantara, S., Lee, C.-T., Lin, N.-H., & Tsai, Y. I. (2019). Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in upper South East Asia. Science of the Total Environment, 658, 708–722. https://doi.org/10.1016/j.scitotenv.2018.12.201.

    Article  CAS  Google Scholar 

  • Thirumalai, K., DiNezio, P. N., Okumura, Y., & Deser, C. (2017). Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nature Communications, 8(1), 15531. https://doi.org/10.1038/ncomms15531.

    Article  CAS  Google Scholar 

  • Thompson, A. M. (1992). The oxidizing capacity of the Earth’s atmosphere: probable past and future changes. Science, 256, 1157–1165. https://doi.org/10.1126/science.256.5060.1157.

    Article  CAS  Google Scholar 

  • Tian, J., & Chen, D. (2010). Spectral, spatial, and temporal sensitivity of correlating MODIS aerosol optical depth with ground-based fine particulate matter (PM2.5) across southern Ontario. Canadian Journal of Remote Sensing, 36(2), 119–128. https://doi.org/10.5589/m10-033.

    Article  Google Scholar 

  • Tsai, T.-C., Jeng, Y.-J., Chu, D. A., Chen, J.-P., & Chang, S.-C. (2011). Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment, 45(27), 4777–4788. https://doi.org/10.1016/j.atmosenv.2009.10.006.

    Article  CAS  Google Scholar 

  • Wang, J., & Christopher, S. A. (2003). Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophysical Research Letters, 30(21), 2095. https://doi.org/10.1029/2003GL018174.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, Y., Xin, J., Li, Z., & Wang, X. (2010). Assessment and comparison of three years of Terra and Aqua MODIS aerosol optical depth retrieval (C005) in Chinese terrestrial regions. Atmospheric Research, 97(1–2), 229–240. https://doi.org/10.1016/j.atmosres.2010.04.004.

    Article  Google Scholar 

  • Wang, S. H., Welton, E. J., Holben, B. N., Tsay, S. C., Lin, N. H., Giles, D., Buntoung, S., Chantara, S., Wiriya, W., Stewart, S. A., Janjai, S., Nguyen, X. A., Hsiao, T. C., Chen, W. N., & Lin, T. H. (2015). Vertical distribution and columnar optical properties of springtime biomass burning aerosols over northern Indochina during 2014 7-SEAS Campaign. Aerosol and Air Quality Research, 15(5), 2037–2050. https://doi.org/10.4209/aaqr.2015.05.0310.

    Article  CAS  Google Scholar 

  • Wiriya, W., Prapamontol, T., & Chantara, S. (2013). PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air-mass movement. Atmospheric Research, 124, 109–122. https://doi.org/10.1016/j.atmosres.2012.12.014.

    Article  CAS  Google Scholar 

  • Wiwatanadate, P. (2014). Acute air pollution-related symptoms among residents in Chiang Mai, Thailand. Journal of Environmental Health, 76(6), 76–85.

    CAS  Google Scholar 

  • Worden, H. M., Deeter, M. N., Frankenberg, C., George, M., Nichitiu, F., Worden, J., Aben, I., Bowman, K. W., Clerbaux, C., Coheur, P. F., de Laat, A. T. J., Detweiler, R., Drummond, J. R., Edwards, D. P., Gille, J. C., Hurtmans, D., Luo, M., Martínez-Alonso, S., Massie, S., Pfister, G., & Warner, J. X. (2013). Decadal record of satellite carbon monoxide observations. Atmospheric Chemistry and Physics, 13(2), 837–850. https://doi.org/10.5194/acp-13-837-2013.

    Article  CAS  Google Scholar 

  • Xu, J., Jiang, H., Xiao, Z., Wang, B., Wu, J., & Lv, X. (2016). Estimating air particulate matter using MODIS data and analyzing its spatial and temporal pattern over the Yangtze Delta region. Sustainability., 8(9), 932. https://doi.org/10.3390/su8090932.

    Article  CAS  Google Scholar 

  • Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., & Zhang, Q. (2019). Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: a machine learning method with inputs from satellites, chemical transport model, and ground observations. Environment International, 123, 345–357. https://doi.org/10.1016/j.envint.2018.11.075.

    Article  CAS  Google Scholar 

  • Yin, Y., Chevallier, F., Ciais, P., Broquet, G., Fortems-Cheiney, A., Pison, I., & Saunois, M. (2015). Decadal trends in global CO emissions as seen by MOPITT. Atmospheric Chemistry and Physics, 15(23), 13433–13451. https://doi.org/10.5194/acp-15-13433-2015.

    Article  CAS  Google Scholar 

  • Yoon, J., Chang, D. Y., Lelieveld, J., Pozzer, A., Kim, J., & Yum, S. S. (2019). Empirical evidence of a positive climate forcing of aerosols at elevated albedo. Atmospheric Research, 229, 269–279. https://doi.org/10.1016/j.atmosres.2019.07.001.

    Article  Google Scholar 

  • Zeng, Q., Chen, L., Zhu, H., Wang, Z., Wang, X., Zhang, L., et al. (2018). Satellite-based estimation of hourly PM2.5 concentrations using a vertical-humidity correction method from Himawari-AOD in Hebei. Sensors, 18(10), 3456. https://doi.org/10.3390/s18103456.

    Article  CAS  Google Scholar 

  • Zhang, H., Hoff, R. M., & Engel-Cox, J. A. (2009). The relation between moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by U.S. Environmental Protection Agency Regions. Journal of the Air & Waste Management Association, 59(11), 1358–1369. https://doi.org/10.3155/1047-3289.59.11.1358.

    Article  Google Scholar 

  • Zhang, L., Jiang, H., Lu, X., & Jin, J. (2016). Comparison analysis of global carbon monoxide concentration derived from SCIAMACHY, AIRS, and MOPITT. International Journal of Remote Sensing, 37(21), 5155–5175. https://doi.org/10.1080/01431161.2016.1230282.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Faculty of Engineering, Kasetsart University and the Kasetsart University Research and Development Institute (KURDI). MODIS AODs data were accessed through the website of the NASA Goddard Space Flight Center. MOPITT CO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. Ground monitoring data were obtained from the Pollution Control Department (PCD), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pichnaree Lalitaporn.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalitaporn, P., Mekaumnuaychai, T. Satellite measurements of aerosol optical depth and carbon monoxide and comparison with ground data. Environ Monit Assess 192, 369 (2020). https://doi.org/10.1007/s10661-020-08346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08346-7

Keywords

Navigation