Skip to main content

Advertisement

Log in

Characterization of aqueous formulations of tetra- and pentavalent forms of vanadium in support of test article selection in toxicology studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tetravalent (VIV) and pentavalent (VV) forms of vanadium were selected for testing by the National Toxicology Program via drinking water exposure due to potential human exposure. To aid in the test article selection, drinking water formulations (125–2000 mg/L) of vanadyl sulfate (VIV), sodium orthovanadate, and sodium metavanadate (VV) were characterized by ultraviolet/visible (UV/VIS) spectroscopy, mass spectrometry (MS), or 51V nuclear magnetic resonance (NMR) spectroscopy. Aqueous formulations of orthovanadate, metavanadate, and vanadyl sulfate in general were basic, neutral, and acidic, respectively. Changes in vanadium speciation were investigated by adjusting formulation pH to acidic, neutral, or basic. There was no visible difference in UV/VIS spectra of pentavalent forms. NMR and MS analyses showed that the predominant oxidovanadate species in both ortho- and metavanadate formulations at basic and acidic pH, respectively, were the monomer and decamer, while, a mixture of oxidovanadates were present at neutral pH. Oxidovanadate species were not observed in vanadyl sulfate formulations at acidic pH but were observed at basic pH suggesting conversion of VIV to VV. These data suggest that formulations of both ortho- and metavanadate form similar oxidovanadate species in acidic, neutral and basic pH and exist mainly in the VV form while vanadyl sulfate exists mainly as VIV in acidic pH. Therefore, the formulation stability overtime was investigated only for sodium metavanadate and vanadyl sulfate. Drinking water formulations (50 and 2000 mg/L) of metavanadate (~pH 7) and vanadyl sulfate (~pH 3.5) were ≥92 % of target concentration up to 42 days at ~5 °C and ambient temperature demonstrating the utility in toxicology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agency USEPA (2015) Fact Sheet: Drinking Water Contaminant Candidate List 4-Draft, Office of Water, U.S. EPA

  • Amado AM, Aureliano M, Riberio-Claro PJA, Teixeira-Dias JJC (1993) Combined Raman and 51 V NMR spectroscopic study of vanadium (V) oligomerization in aqueous alkaline solutions. J Raman Spectrosc 24:699–703

    Article  CAS  Google Scholar 

  • Aureliano M (2011) Recent perspectives into biochemistry of decavanadate. World Journal of Biological Chemistry 2:215–225

    Article  Google Scholar 

  • Aureliano M (2016) Decavanadate toxicology and pharmacological activities: V10 or V1, both or none? Oxidative Med Cell Longev 2016:6103457

    Article  CAS  Google Scholar 

  • Aureliano M, Ohlin CA (2014) Decavanadate in vitro and in vivo effects: facts and opinions. J Inorg Biochem 137:123–130

    Article  CAS  Google Scholar 

  • Aureliano M, Ohlin CA, Vieira MO, Marques MP, Casey WH, Batista de Carvalho LA (2016) Characterization of decavanadate and decaniobate solutions by Raman spectroscopy. Dalton Transactions (Cambridge, England: 2003) 45:7391–7399

    Article  CAS  Google Scholar 

  • Barceloux DG (1999) Vanadium. J Toxicol Clin Toxicol 37:265–278

    Article  CAS  Google Scholar 

  • Barrio DA, Etcheverry SB (2006) Vanadium and bone development: putative signaling pathways. Can J Physiol Pharmacol 84:677–686

    Article  CAS  Google Scholar 

  • Cantley LC Jr, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423

    CAS  Google Scholar 

  • Chen X, Yan S, Wang H, Hu Z, Wang X, Huo M (2015) Aerobic oxidation of starch catalyzed by isopolyoxovanadate Na4Co(H2O)6V10O28. Carbohydr Polym 117:673–680

    Article  CAS  Google Scholar 

  • Crans DC, Rithner CD, Theisen LA (1990) Application of time-resolved vanadium-51 2D NMR for quantitation of kinetic exchange pathways between vanadate monomer, dimer, tetramer, and pentamer. J Am Chem Soc 112:2901–2908

    Article  CAS  Google Scholar 

  • Crans DC, Amin SS, Keramidas AD (1998) Chemistry of relevance to vanadium in the environment. Advances in Environmental Science and Technology-New York 30:73–96

    CAS  Google Scholar 

  • Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902

    Article  CAS  Google Scholar 

  • Crans DC, Tarlton ML, McLauchlan CC (2014) Trigonal bipyramidal or square pyramidal coordination geometry? Investigating the most potent geometry for vanadium phosphatase inhibitors. Eur J Inorg Chem 2014:4450–4468

    Article  CAS  Google Scholar 

  • Cruywagen JJ, Heyns JBB (1991) Vanadium(V) equilibria. Spectrophotometric and enthalpimetric investigation of the dimerization and deprotonation of HVO42−. Polyhedron 10:249–253

    Article  CAS  Google Scholar 

  • Dimond EG, Caravaca J, Benchimol A (1963) Vanadium, excretion, toxicity, lipid effect in man. Am J Clin Nutr 12:49–53

    CAS  Google Scholar 

  • Erdmann E, Krawietz W, Philipp G, Hackbarth I, Schmitz W, Scholz H, Crane FL (1979) Purified cardiac cell membranes with high (Na+ + K+)ATPase activity contain significant NADH-vanadate reductase activity. Nature 282:335–336

    Article  CAS  Google Scholar 

  • Evangelou AM (2002) Vanadium in cancer treatment. Crit Rev Oncol Hematol 42:249–265

    Article  Google Scholar 

  • Finke RG, Droege MW, Cook JC, Suslick KS (1984) Fast atom bombardment mass spectroscopy (FABMS) of polyoxoanions. J Am Chem Soc 106:5750–5751

    Article  CAS  Google Scholar 

  • Habayeb MA, Hileman OE Jr (1980) 51V FT-nmr investigations of metavanadate ions in aqueous solutions. Can J Chem 58:2255–2261

    Article  CAS  Google Scholar 

  • Heath E, Howarth OW (1981) Vanadium-51 and oxygen-17 nuclear magnetic resonance study of vanadate(V) equilibria and kinetics. J Chem Soc Dalton Trans, 1105–1110

  • IARC (2006) Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans/World Health Organization, International Agency for Research on Cancer 86:1–294

    Google Scholar 

  • IOM (2001) Arsenic, boron, nickel, silicon, and vanadium, dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press (US), Washington (DC)

  • IPCS (2001) Vanadium pentoxide and other inorganic vanadium compounds,Concise International Chemical Assessment Document 29. International Programme on Chemical Safety (IPCS), World Health Organization (WHO), Geneva, Switzerland

  • Kanamori K, Tsuge K (2012) Inorganic chemistry of vanadium. In: Michibata H (ed) Vanadium: biochemical and molecular biological approaches. Springer, Dordrecht, pp. 3–31

    Chapter  Google Scholar 

  • Levina A, McLeod AI, Kremer LE, Aitken JB, Glover CJ, Johannessen B, Lay PA (2014) Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: an X-ray absorption spectroscopic study. Metallomics: Integrated Biometal Science 6:1880–1888

    Article  CAS  Google Scholar 

  • Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA (2015) Biotransformations of antidiabetic vanadium prodrugs in mammalian cells and cell culture media: a XANES spectroscopic study. Inorg Chem 54:6707–6718

    Article  CAS  Google Scholar 

  • Llobet JM, Domingo JL (1984) Acute toxicity of vanadium compounds in rats and mice. Toxicol Lett 23:227–231

    Article  CAS  Google Scholar 

  • Moskalyk RR, Alfantazi AM (2003) Processing of vanadium: a review. Miner Eng 16:793–805

    Article  CAS  Google Scholar 

  • Nielsen FH, Uthus EO (1990) The essentiality and metabolism of vanadium. In: Chasteen ND (ed) Vanadium in biological systems: physiology and biochemistry. Springer, Dordrecht, pp. 51–62

    Chapter  Google Scholar 

  • NLM (2009) Vanadium. U.S. National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD

  • NRC (2005) Mineral tolerance of animals: second, Revised edn. The National Academies Press, Washington, DC, p. 510

    Google Scholar 

  • NTP (2008) Chemical information review document for oral exposure to tetravalent and pentavalent vanadium compounds. National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health (NTP)

  • Office of Environmental Health Hazard Assessment SoCEPA (2015) Chemicals known to the state to cause cancer or reproductive toxicity

  • Ohlin CA (2012) Reaction dynamics and solution chemistry of polyoxometalates by electrospray ionization mass spectrometry. Chemistry, an Asian Journal 7:262–270

    Article  CAS  Google Scholar 

  • Paternain JL, Domingo JL, Gomez M, Ortega A, Corbella J (1990) Developmental toxicity of vanadium in mice after oral administration. Journal of Applied Toxicology: JAT 10:181–186

    Article  CAS  Google Scholar 

  • Pettersson L, Andersson I, Hedman B (1985) Multicomponent polyanions. 37. A potentiometric and vanadium-51 NMR study of equilibria in the hydrogen ion-vanadate (H+ − HVO42−) system in 3.0 M-sodium perchlorate medium covering the range 1 < −lg[H+] < 10. Chem Scr 25:309–317

    CAS  Google Scholar 

  • Pettersson L, Andersson I, Gorzsás A (2003) Speciation in peroxovanadate systems. Coord Chem Rev 237:77–87

    Article  CAS  Google Scholar 

  • Ramos S, Manuel M, Tiago T, Duarte R, Martins J, Gutierrez-Merino C, Moura JJ, Aureliano M (2006) Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate. J Inorg Biochem 100:1734–1743

    Article  CAS  Google Scholar 

  • Rehder D (1991) The bioinorganic chemistry of vanadium. Angew Chem Int Ed Engl 30:148–167

    Article  Google Scholar 

  • Rehder D (2008) Vanadium NMR of organovanadium complexes. Coord Chem Rev 252:2209–2223

    Article  CAS  Google Scholar 

  • Rehder D (2013) Vanadium. Its role for humans. Metal Ions in Life Sciences 13:139–169

    Article  Google Scholar 

  • Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–358

    Article  CAS  Google Scholar 

  • Ringel I, Peyser YM, Muhlrad A (1990) Vanadium-51 NMR study of vanadate binding to myosin and its subfragment 1. Biochemistry 29:9091–9096

    Article  CAS  Google Scholar 

  • Roberts GK, Stout MD, Sayers B, Fallacara DM, Hejtmancik MR, Waidyanatha S, Hooth MJ (2016) 14-day toxicity studies of tetravalent and pentavalent vanadium compounds in Harlan Sprague Dawley rats and B6C3F1/N mice via drinking water exposure. Toxicology Reports 3:531–538

    Article  CAS  Google Scholar 

  • Schwarz K, Milne DB (1971) Growth effects of vanadium in the rat. Science (New York, NY) 174:426–428

    Article  CAS  Google Scholar 

  • Sepe A, Ciaralli L, Ciprotti M, Giordano R, Funari E, Costantini S (2003) Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic Sea. Food Addit Contam 20:543–552

    Article  CAS  Google Scholar 

  • Smith DM, Pickering RM, Lewith GT (2008) A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM: Monthly Journal of the Association of Physicians 101:351–358

    Article  CAS  Google Scholar 

  • Somerville J, Davies B (1962) Effect of vanadium on serum cholesterol. Am Heart J 64:54–56

    Article  CAS  Google Scholar 

  • Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103:554–558

    Article  CAS  Google Scholar 

  • Tracey AS, Gresser MJ, Galeffi B (1988) Vanadium(V) oxyanions. Interactions of vanadate with methanol and methanol/phosphate. Inorg Chem 27:157–161

    Article  CAS  Google Scholar 

  • Truebenbach CS, Houalla M, Hercules DM (2000) Characterization of isopoly metal oxyanions using electrospray time-of-flight mass spectrometry. Journal of Mass Spectrometry: JMS 35:1121–1127

    Article  CAS  Google Scholar 

  • Wachs IE (2013) Catalysis science of supported vanadium oxide catalysts. Dalton Transactions (Cambridge, England: 2003) 42:11762–11769

    Article  CAS  Google Scholar 

  • Walanda DK, Burns RC, Lawrance GA, von Nagy-Felsobuki EI (2000) Unknown isopolyoxovanadate species detected by electrospray mass spectrometry. Inorg Chim Acta 305:118–126

    Article  CAS  Google Scholar 

  • Wever R, Kustin K (1990) Vanadium: a biologically relevant element. In: Sykes AG (ed) Advances in inorganic chemistry. Academic Press, Orlando, pp. 81–115

    Google Scholar 

  • Xu X, Bosnjakovic-Pavlovic N, Colovic MB, Krstic DZ, Vasic VM, Gillet JM, Wu P, Wei Y, Spasojevic-de Bire A (2016) A combined crystallographic analysis and ab initio calculations to interpret the reactivity of functionalized hexavanadates and their inhibitor potency toward Na/K-ATPase. Journal of Inorganic Biochemistry

  • Zenz C, Bartlett JP, Thiede WH (1962) Acute vanadium pentoxide intoxication. Arch Environ Health 5:542–546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Brad Collins and Dr. Georgia Roberts for their review of this manuscript. This work was performed for the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, under contract no. HHSN273201000016C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suramya Waidyanatha.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Table S1

(DOCX 46 kb)

Table S2

(DOCX 46 kb)

Table S3

(DOCX 45 kb)

Table S4

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutlu, E., Cristy, T., Graves, S.W. et al. Characterization of aqueous formulations of tetra- and pentavalent forms of vanadium in support of test article selection in toxicology studies. Environ Sci Pollut Res 24, 405–416 (2017). https://doi.org/10.1007/s11356-016-7803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7803-x

Keywords

Navigation