Skip to main content

Inorganic Chemistry of Vanadium

  • Chapter
  • First Online:
Vanadium

Abstract

Stereochemistry and redox property are essential factors in considering the roles of vanadium in biological systems. Coordination geometries adopted by vanadium ions with oxidation numbers +3, +4, and +5 are summarized in this chapter to provide a clue for determining the structure-function relationship of biological vanadium species. Vanadium can have a variety of geometries and its geometry is sometimes flexible. This property may be important for metals in biological systems. The electrochemical properties of complexes in each oxidation state are described by referring to typical mononuclear complexes. The redox potentials of the complexes depend largely on the ligand combination. A comparison of complexes with and without oxo ligands reveals that strong electron donation from oxo ligands stabilizes vanadium ions in higher oxidation states. Additionally, the proton-coupled equilibrium between oxo and aqua ligands imposes a significant effect on the redox behavior of vanadium complexes. Chemical redox reactions related to vanadium catalysts are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkins P, Overton T, Rourke J, Weller M, Armstrong F (2006) Shriver & Atkins inorganic chemistry, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  2. Fenton DE (1995) Biocoordination chemistry. Oxford University Press, Oxford

    Google Scholar 

  3. Elvington K, Gonzalez A, Pettersson L (1996) Speciation in vanadium bioinorganic systems. 2. An NMR, ESR, and potentiometric study of the aqueous H+–vanadate–maltol system. Inorg Chem 35:3388–3393

    Article  Google Scholar 

  4. Rehder D (2008) Bioinorganic vanadium chemistry. Wiley, Chichester

    Book  Google Scholar 

  5. Choukroun R, Moumboko P, Chevalier S, Etienne M, Donnadieu B (1998) Cationic homoleptic vanadium(II), (IV), and (V) complexes arising from protonolysis of [V(NEt)4]. Angew Chem Int Ed 37:3169–3172

    Article  CAS  Google Scholar 

  6. Dubberley SR, Tyrell BR, Mountford P (2001) Tetrakis(dimethylamido)vanadium(IV). Acta Cryst C57:902–904

    CAS  Google Scholar 

  7. Song JI, Gambarotta S (1996) Preparation, characterization, and reactivity of a diamagnetic vanadium nitride. Chem Eur J 2:1258–1263

    Article  CAS  Google Scholar 

  8. Komuro T, Matsuo T, Kawaguchi H, Tatsumi K (2005) Synthesis of a vanadium(III) tris(arylthiolato) complex and its reactions with azide and azo compounds: formation of a sulfenamide complex via cleavage of an azo N=N bond. Inorg Chem 44:175–177

    Article  CAS  Google Scholar 

  9. Messerschmidt A, Wever R (1996) X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis. Proc Natl Acad Sci USA 93: 392–396

    Article  CAS  Google Scholar 

  10. Messerschmidt A, Prade L, Wever R (1997) Implications for the catalytic mechanisms of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form. Biol Chem 378:309–315

    Article  CAS  Google Scholar 

  11. Addison AW, Rao TN, Reedijk J, Jacobus VR, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulfur donor ligands: the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidzol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc Dalton Trans 1349–1356

    Google Scholar 

  12. Baruah B, Rath SP, Chakravorty A (2004) A novel pentacoordinated dioxovanadium(V) salicylaldiminate: solvent specific crystallization of dimorphs with contrasting coordination geometries, ligand conformations and supramolecular architectures. Eur J Chem 9: 1873–1878

    Google Scholar 

  13. Cornman CR, Geiser-Bush KM, Rowley SP, Boyle PD (1997) Structural and electron paramagnetic resonance studies of the square pyramidal to trigonal bipyramidal distortion of vanadyl complexes containing sterically crowded Schiff base ligands. Inorg Chem 36:6401–6408

    Article  CAS  Google Scholar 

  14. Wikete C, Wu P, Zampella G, De Giola L, Licini G, Rehder D (2007) Glycine-and sarcosine-based models of vanadium-dependent haloperoxidases in sulfoxygenation reactions. Inorg Chem 46:196–207

    Article  CAS  Google Scholar 

  15. Santoni G, Licini G, Rehder D (2003) Catalysis of oxo transfer to prochiral sulfides by oxovanadium(V) compounds that model the active center of haloperoxidases. Chem Eur J 9:4700–4708

    Article  CAS  Google Scholar 

  16. Hsu HF, Chu WC, Hung CH, Liao JH (2003) The first example of a seven-coordinate vanadium(III) thiolate complex containing the hydrazine molecule, an intermediate of nitrogen fixation. Inorg Chem 42:7369–7371

    Article  CAS  Google Scholar 

  17. Groysman S, Goldberg I, Goldschmidt Z, Kol M (2005) Vanadium(III) and vanadium(V) amine tris(Phenolate) complexes. Inorg Chem 44:5073–5080

    Article  CAS  Google Scholar 

  18. Aghabozorg H, Sadr-khanlou E (2007) 2,9-Dimethyl-1,10-phenanthrolinium dioxo(pyridine-2,6-dicarboxylato)vanadate(V) Monohydrate. Acta Cryst E63:m1753

    CAS  Google Scholar 

  19. Nakajima K, Tokida N, Kojima M, Fujita J (1992) Structures of two geometrical isomers of dioxo[(S)-N-salicylidene-3-aminopyrrolidine]vanadium(V). Bull Chem Soc Jpn 65:1725–1727

    Article  CAS  Google Scholar 

  20. Santoni G, Rehder D (2003) Structural models for the reduced form of vanadate-dependent peroxidases: vanadyl complexes with bidentate chiral Schiff base ligands. J Inorg Biochem 98:758–764

    Article  Google Scholar 

  21. Lorber C, Choukroun R, Donnadieu B (2003) Synthesis and crystal structure of unprecedented phosphine adducts of d1-aryl imido–vanadium(IV) complexes. Inorg Chem 42:673–675

    Article  CAS  Google Scholar 

  22. Stiefel EI, Eisenberg R, Rosenberg RC, Gray HB (1966) Characterization and electronic structures of six-coordinate trigonal-prismatic complexes. J Am Chem Soc 88:2956–2966

    Article  CAS  Google Scholar 

  23. Kondo M, Minakoshi S, Iwata K, Shimizu T, Matsuzaka H, Kamigata N, Kitagawa S (1996) Crystal structure of a tris(dithiolene) vanadium(IV) complex having unprecedented D 3h symmetry. Chem Lett 25:489–490

    Article  Google Scholar 

  24. Eisenberg R, Stiefel EI, Rosenberg RC, Gray HB (1966) Six-coordinate trigonal-prismatic complexes of first-row transition metals. J Am Chem Soc 88:2874–2876

    Article  CAS  Google Scholar 

  25. Welch JH, Bereman RD, Singh P (1988) Synthesis and characterization of two vanadium complexes of the 1,2-dithiolene 5,6-dihydro-1,4-dithiin-2,3-dithiolate. Crystal structure of [(C4H9)4N][V(DDDT)3]. Inorg Chem 27:2862–2868

    Article  CAS  Google Scholar 

  26. Stiefel EI, Dori Z, Gray HB (1967) Octahedral vs. trigonal-prismatic coordination. Structure of (Me4N)2[V(mnt)3]. J Am Chem Soc 89:3353–3354

    Article  CAS  Google Scholar 

  27. Cooper SR, Koh YB, Raymond KN (1982) Synthetic, structural, and physical studies of bis(triethylammonium) tris(catecholato)vanadate(IV), potassium bis(catecholato) oxovanadate(IV), and potassium tris(catecholato)vanadate(III). J Am Chem Soc 104:5092–5102

    Article  CAS  Google Scholar 

  28. Branca M, Micera G, Dessi A, Sanna D, Raymond KN (1990) Formation and structure of the tris(catecholato)vanadate(IV) complex in aqueous solution. Inorg Chem 29:1586–1589

    Article  CAS  Google Scholar 

  29. Cass ME, Gordon NR, Pierpont CG (1986) Catecholate and semiquinone complexes of vanadium. Factors that direct charge distribution in metal–quinone complexes. Inorg Chem 25:3962–3967

    Article  CAS  Google Scholar 

  30. Kanamori K, Kusajima K, Yachi H, Suzuki H, Miyashita Y, Okamoto K (2007) Synthesis, x-ray structures, and solution properties of vanadium(III) and –(IV) complexes with N-(2-hydroxyphenyl)-N-(2-pyridylmethyl)amine. Bull Chem Soc Jpn 80:324–328

    Article  CAS  Google Scholar 

  31. Morgenstern B, Steinhauser S, Hogetschweiler K, Garribba E, Micera G, Sanna D, Nagy L (2004) Complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol and related ligands. Inorg Chem 43:3116–3126

    Article  CAS  Google Scholar 

  32. Drew RE, Einstein FWB (1972) The crystal structure of ammonium oxodiperoxoamminevanadate(V). Inorg Chem 11:1079–1083

    Article  CAS  Google Scholar 

  33. Crans DC, Keramidas AD, Hoover-Litty H, Anderson OP, Miller MM, Lemoine LM, Pleasic-Williams S, Vandenberg M, Rossomando AJ, Sweet LJ (1997) Synthesis, structure, and biological activity of a new insulinomimetic peroxovanadium compound: bisperoxovanadium imidazole monoanion. J Am Chem Soc 119:5447–5448

    Article  CAS  Google Scholar 

  34. Smatanová IK, Marek J, Švančárek P, Schwendt P (2000) Bis(tetra-n-butylammonium) bis[(mandelato)oxo(peroxo)vanadate(V)] mandelic acid solvate. Acta Cryst C56:154–155

    Google Scholar 

  35. (a) Towns RLR, Levenson RA (1972) Structure of the seven-coordinate cyano complex of vanadium(III). J Am Chem Soc 94:4345–4346. (b) Levenson RA, Towns RLR (1974) Crystal and molecular structure of potassium heptacyanovanadate(III) dihydrate. Inorg Chem 13: 105–109

    Google Scholar 

  36. Neumann R, Assael I (1989) Vanadium(V)/vanadium(III) redox couple in acidic organic media. Structure of a vanadium(III)-tetraethylene glycol pentagonal-bipyramidal complex [[V(teg)(Br)2]+Br]. J Am Chem Soc 111:8410–8413

    Article  CAS  Google Scholar 

  37. Dutton JC, Fallon GD, Murray KS (1990) A macrocyclic binuclear vanadium(III) complex with di-µ-alkoxo bridging and pentacoordinate-bipyramidal metal co-ordination. X-ray crystal structure of [V2L(H2O)4][ClO4]4·2H2O (H2L = 1,7,14,20-tetramethyl-2,6,15,19-tetra-aza[7,7](2,6)-pyridinophane-4,7-diol). J Chem Soc Chem Commun 64–65

    Google Scholar 

  38. Stomberg R (1986) The crystal structure of potassium bis(oxalate)oxoperoxovanadate(V) hemihydrate, K3[VO(O2)(C2O4)]·½H2O, and potassium bis(oxalate)dioxovanadate(V) trihydrate, K3[VO2(C2O4)2]·3H2O. Acta Chem Scand A40:168–176

    Article  CAS  Google Scholar 

  39. Gyepes R, Pacigová S, Sivák M, Tatiersky J (2009) Experimental and computational evidence of solid-state anion–π and π–π interactions in [VO(O2)(L)(pa)]·xH2O complexes (L = picolinate, pyrazinate or quinolinate; pa = picolinamide). New J Chem 33:1515–1522

    Article  CAS  Google Scholar 

  40. Szentivanyi H, Stomberg R (1983) The crystal structure of ammonium (2,2′-bipyridine) oxodiperoxovanadate(V) tetrahydrate, NH4[VO(O2)2(C10H8N2)]·4H2O, at –100°C. Acta Chem Scand A37:553–559

    Article  CAS  Google Scholar 

  41. Castro SL, Martin JD, Christou G (1993) A new vanadium(V) persulfide complex: (NEt4)[VO(S2)2(bpy)]. Inorg Chem 32:2978–2980

    Article  CAS  Google Scholar 

  42. Al-Ani FT, Hughes DL, Pickett CJ (1988) Preparation, x-ray crystal structure, and properties of [V(S2)2(terpy)]: intramolecular coupling of the sulfide ligands of [VS4]3-. J Chem Soc Dalton Trans 1705–1707

    Article  Google Scholar 

  43. Einstein FEB, Enwall E, Morris DM, Sutton D (1971) Crystal and molecular structure and vibrational spectra of the vanadium(V) oxide trinitrate–acetonitrile complex, VO(NO3)3·CH3CN. Inorg Chem 10:678–686

    Article  Google Scholar 

  44. Kanamori K, Kameda E, Okamoto K (1996) Heptacoordinate vanadium(III) complexes containing a didentate sulfate ligand. X-ray structures of [V2(SO4)3{N, N′-bis(2-pyridylmethyl)-1,2-ethanediamine}2] and [V(SO4){N, N, N′, N′-tetrakis(2-pyridylmethyl)-1,2-ethanediamine}]+ and their solution properties. Bull Chem Soc Jpn 69:2901–2909

    Article  CAS  Google Scholar 

  45. Chatterjee M, Maji M, Ghosh S, Mak TCW (1998) Studies of V(III) complexes with selected α-N-heterocyclic carboxylato NO donor ligands: structure of a new seven-coordinated pentagonal bipyramidal complex containing picolinato ligands. J Chem Soc Dalton Trans 3641–3645

    Google Scholar 

  46. Okamoto K, Hidaka J, Fukagawa M, Kanamori K (1992) Structure of trisaqua (nitrilotriacetato)vanadium(III) tetrahydrate. Acta Cryst C48:1025–1027

    CAS  Google Scholar 

  47. Shimoi M, Saito Y, Ogino H (1991) Syntheses and crystal structures of seven-coordinate (ethylenediamine-N, N, N′, N′-tetraacetato)aquavanadate(III) complexes. Bull Chem Soc Jpn 64:2629–2634

    Article  CAS  Google Scholar 

  48. Ogino H, Shimoi M, Saito Y (1989) Structural identification of the reactive vanadium(III) intermediate formed in the electron-transfer reactions of [N′-(2-hydroxyethyl)ethylenediamine-N, N, N′-triacetato]aquavanadium(III) complex ([V(hedtra)(H2O)]) with halogenopentaamminecobalt(III) complex: x-ray crystal structure of [V(hedtra)(H2O)]·2H2O and K[VO(hedtra)]·H2O. Inorg Chem 28:3596–3600

    Article  CAS  Google Scholar 

  49. Miyoshi K, Wang J, Mizuta T (1995) An x-ray crystallographic study on the molecular structures of seven-coordinate (ethylenediamine-N, N, N′-triacetato-N′-acetic acid)(aqua)-titanium(III) and -vanadium(III), [TiIII(hedta)(H2O)]·H2O and [VIII(hedta)(H2O)]·H2O. Inorg Chim Acta 228:165–172

    Article  CAS  Google Scholar 

  50. Kanamori K, Kyotoh A, Fujimoto K, Nagata K, Suzuki H, Okamoto K (2001) Syntheses, structures, and properties of vanadium(III) complexes with the hexadentate ligand, tetramethylenediamine-N, N, N′, N′-tetraacetate, N, N′-bis(2-pyridylmethyl)-1,2-ethanediamine-N, N′-diacetate, and N, N′-bis(2-pyridylmethyl)-1,3-propanediamine-N, N′-diacetate. Bull Chem Soc Jpn 74:2113–2118

    Article  CAS  Google Scholar 

  51. Kanamori K, Ino K, Maeda H, Miyazaki K, Fukagawa M, Kumada J, Eguchi T, Okamoto K (1994) Relationship between oxo-bridged dimer formation and structure of vanadium(III) amino polycarboxylates. Inorg Chem 33:5547–5554

    Article  CAS  Google Scholar 

  52. Kanamori K, Yamamoto K, Okayasu T, Matsui N, Okamoto K, Mori W (1997) Structure and magnetic properties of dinuclear vanadium(III) complexes with alkoxo bridge. Bull Chem Soc Jpn 70:3031–3040

    Article  CAS  Google Scholar 

  53. Kanamori K, Okayasu T, Okamoto K (1995) Preparation and structure of dinuclear vanadium(III) complex triply bridged by three different groups. Chem Lett 24:105–106

    Article  Google Scholar 

  54. Berry RE, Armstrong EM, Beddoes RL, Collison D, Ertok SN, Helliwell M, Garner CD (1999) The structural characterization of amavadin. Angew Chem Int Ed 38:795–797

    Article  CAS  Google Scholar 

  55. Armstrong EM, Beddoes RL, Calviou LJ, Charnock JM, Collison D, Ertok N, Naismith JH, Garner CD (1993) The chemical nature of amavadin. J Am Chem Soc 115:807–808

    Article  CAS  Google Scholar 

  56. Carrond MAAFdeCT, Duarte MTLS, Costa Pessoa J, Silva JAL, Fraústo da Silva JJR, Candida M, Vaz TA, Vilas-Boas LF (1988) Bis(N-hydroxyiminodiacetate)vanadate(IV), a synthetic model of amavadin. J Chem Soc Chem Commun 17:1158–1159

    Article  Google Scholar 

  57. Won TJ, Barnes CL, Schlemper EO, Thompson RC (1995) Two crystal structures featuring the tetraperoxovanadate(V) anion and a brief reinvestigation of peroxovanadate equilibria in neutral and basic solution. Inorg Chem 34:4499–4503

    Article  CAS  Google Scholar 

  58. Piovesana O, Cappuccilli G (1972) Eight-coordination. I. Dodecahedral vanadium(IV) complexes with sulfur-chelating ligands. Inorg Chem 11:1543–1550

    Article  CAS  Google Scholar 

  59. Fanfani L, Nunzi A, Zanazzi PF, Zanzari AR (1972) The crystal structure of tetrakis(dithioacetato)vanadium(IV). Acta Cryst B28:1298–1302

    Google Scholar 

  60. Bonamico M, Dessy G, Fares V, Scaramuzza L (1974) Structural studies of eight-co-ordinate metal complexes. Part I. Crystal and molecular structures of tetrakis (phenylthioacetato)vanadium(IV) and tetrakis(dithiobenzoato)vanadium(IV). J Chem Soc Dalton Trans 1258–1263

    Google Scholar 

  61. Sendlinger SC, Nicholson JR, Lobkovsky EB, Hufman JC, Rehder D, Christou G (1993) Reactivity studies of mononuclear and dinuclear vanadium–sulfide–thiolate compounds. Inorg Chem 32:204–210

    Article  CAS  Google Scholar 

  62. Duraj SA, Andras MT, Kibala PA (1990) Metal–metal bonds involving vanadium atoms. A facile synthesis of a novel divanadium tetrakis(dithioacetate) that contains two µ-η2-S2 bridges from bis(benzene)vanadium(0) and dithioacetic acid. Inorg Chem 29:1232–1234

    Article  CAS  Google Scholar 

  63. Cotton FA, Wilkinson G, Bochmann M, Murillo C (1998) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  64. Shaw MJ (2006) Vanadium electrochemistry. Encyclopedia of electrochemistry, vol 7a. Wiley, Weinheim, pp 357–381

    Google Scholar 

  65. Pampaloni G, Koelle U (1994) Chemical and electrochemical studies on metal carbonyl/cobaltocene Systems. J Organomet Chem 481:1–6

    Article  CAS  Google Scholar 

  66. Elschenbroich C, Kroker J, Nowotny M, Behrendt A, Metz B, Harms K (1999) η6-coordination of arsenine to titanium, vanadium, and chromium. Organometallics 18:1495–1503

    Article  CAS  Google Scholar 

  67. Dobson JC (1989) Coordination chemistry and redox properties of polypyridyl complexes of vanadium(II). Inorg Chem 28:1310–1315

    Article  CAS  Google Scholar 

  68. Ghosh P, Taube H, Hasegawa T, Kuroda R (1995) Vanadium(II) salts in pyridine and acetonitrile solvents. Inorg Chem 34:5761–5775

    Article  CAS  Google Scholar 

  69. Holloway JDL, Geiger WE Jr (1979) Electron-transfer reactions of metallocenes. Influence of metal oxidation state on structure and reactivity. J Am Chem Soc 101:2038–2044

    Article  CAS  Google Scholar 

  70. Ogino H, Nagata T, Ogino K (1989) Redox potentials and related thermodynamic parameters of (diaminopolycarboxylato)metal(III/II) redox couples. Inorg Chem 28:3656–3659

    Article  CAS  Google Scholar 

  71. Sokolowski A, Adam B, Weyhermüller T, Kikuchi A, Hildenbrand K, Schnepf R, Hildebrandt P, Bill E, Wieghardt K (1997) Metal- vs. ligand-centered oxidations in phenolato−vanadium and− cobalt complexes: characterization of phenoxyl−cobalt(III) species. Inorg Chem 36:3702–3710

    Article  CAS  Google Scholar 

  72. Hawkins CJ, Kabanos TA (1989) Synthesis and characterization of (catecholato)bis (β-diketonato)vanadium(IV) complexes. Inorg Chem 28:1084–1087

    Article  CAS  Google Scholar 

  73. Klich PR, Daniher AT, Challen PR, McConville DB, Youngs WJ (1996) Vanadium(IV) complexes with mixed O, S donor ligands. Syntheses, structures, and properties of the anions tris(2-mercapto-4-methylphenolato)vanadate(IV) and bis(2-mercaptophenolato)oxovanadate(IV). Inorg Chem 35:347–356

    Article  CAS  Google Scholar 

  74. Best SP, Ciniawsky SA, Humphrey DG (1996) Fourier-transform infrared study of short-lived highly reduced dithiolene complexes by potential-modulation spectroelectrochemical techniques. J Chem Soc Dalton Trans 2945–2949

    Article  Google Scholar 

  75. Nawi MA, Riechel TL (1981) Electrochemical studies of vanadium(III) and vanadium(IV) acetylacetonate complexes in dimethylsulfoxide. Inorg Chem 20:1974–1978

    Article  CAS  Google Scholar 

  76. Kabanos TA, Slawin AM, Williams DJ, Woollins JD (1990) The preparation and x-ray structure of V(N3S2)(dtbs)(phen)·CHCl3 (dtbc = di-t-butylcatecholate, phen = phenanthroline). J Chem Soc Chem Commun 193–194

    Google Scholar 

  77. Michibata H, Kanamori K (1998) Selective accumulation of vanadium by ascidians from seawater. Advances in environmental science and technology, vol 30 (Vanadium in the environment, part 1), Wiley, NewYork, pp 217–249

    Google Scholar 

  78. Kitamura M, Yamashita K, Imai H (1976) Studies on the electrode processes of oxovanadium(IV). II. Electrolytic reduction of vanadyl acetylacetonate in acetonitrile solution at mercury electrode. Bull Chem Soc Jpn 49:97–100

    Article  CAS  Google Scholar 

  79. Tsuchida E, Yamamoto K, Oyaizu K, Iwasaki N, Anson FC (1994) Electrochemical investigations of the complexes resulting from the acid-promoted deoxygenation and dimerization of (N, N′-ethylenebis(salicylideneaminato))oxovanadium(IV). Inorg Chem 33:1056–1063

    Article  CAS  Google Scholar 

  80. Tsuchida E, Oyaizu K, Dewi EL, Imai T, Anson FC (1999) Catalysis of the electroreduction of O2 to H2O by vanadium–salen complexes in acidified dichloromethane. Inorg Chem 38: 3704–3708

    Article  CAS  Google Scholar 

  81. Chatterjeea M, Ghosha S, Wub BM, Mak TCW (1998) A structural and electrochemical study of some oxovanadium(IV) heterochelate complexes. Polyhedron 17:1369–1374

    Article  Google Scholar 

  82. Tasiopoulos AJ, Troganis AN, Evangelou A, Raptopoulou CP, Terzis A, Deligiannakis Y, Kabanos TA (1999) Synthetic analogues for oxovanadium(IV)–glutathione interaction: an EPR, synthetic and structural study of oxovanadium(IV) compounds with sulfhydryl-containing pseudopeptides and dipeptides. Chem Eur J 5:910–920

    Article  CAS  Google Scholar 

  83. Tajika Y, Tsuge K, Sasaki Y (2005) Mononuclear oxovanadium complexes of tris(2-pyridylmethyl)amine. Dalton Trans 1438–1447

    Google Scholar 

  84. Asgedom G, Sreedhara A, Rao C, Kolehmainen E (1996) Monooxovanadium(V) mixed ligand complexes of Schiff bases and catecholates: synthesis, spectral and electrochemical characterization. Polyhedron 15:3731–3739

    Article  CAS  Google Scholar 

  85. Nakajima K, Kojima K, Kojima M, Fujita J (1990) Preparation and characterization of optically active Schiff base-oxovanadium(IV) and -oxovanadium(V) complexes and catalytic properties of these complexes on asymmetric oxidation of sulfides into sulfoxides with organic hydroperoxides. Bull Chem Soc Jpn 63:2620–2630

    Article  CAS  Google Scholar 

  86. Asgedom G, Sreedhara A, Rao C (1995) Oxovanadium(V) Schiff base complexes of trishydroxymethylaminomethane with salicylaldehyde and its derivatives: synthesis, characterization and redox reactivity. Polyhedron 14:1873–1879

    Article  CAS  Google Scholar 

  87. Ghosh S, Nanda KK, Addison AW, Butcher RJ (2002) Mononuclear and mixed-valence binuclear oxovanadium complexes with benzimidazole-derived chelating agents. Inorg Chem 41: 2243–2249

    Article  CAS  Google Scholar 

  88. Maurya MR, Kumar A, Abid M, Azam A (2006) Dioxovanadium(V) and μ-oxo bis[oxovanadium(V)] complexes containing thiosemicarbazone based ONS donor set and their antiamoebic activity. Inorg Chim Acta 359:2439–2447

    Article  CAS  Google Scholar 

  89. Hirao T (1997) Vanadium in modern organic synthesis. Chem Rev 97:2707–2722

    Article  CAS  Google Scholar 

  90. Bolm C, Bienewald F (1996) Asymmetric sulfide oxidation with vanadium catalysts and H2O2. Angew Chem Int Ed Engl 34:2640–2642

    Article  Google Scholar 

  91. Takizawa S, Katayama T, Sasai H (2008) Dinuclear chiral vanadium catalysts for oxidative coupling of 2-naphthols via a dual activation mechanism. Chem Commun 35:4113–4122

    Article  Google Scholar 

  92. Conte V, Floris B (2010) Vanadium catalyzed oxidation with hydrogen peroxide. Inorg Chim Acta 363:1935–1946

    Article  CAS  Google Scholar 

  93. Pecoraro VL, Slebondnic C, Hamstra B (1998) Synthetic models for vanadium haloperoxidases. ACS symposium series, 711(Vanadium Compounds):157–167

    Google Scholar 

  94. Waidmann CR, DiPasquale AG, Mayer JM (2010) Synthesis and reactivity of oxo-peroxo-vanadium(V) bipyridine compounds. Inorg Chem 49:2383–2391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Kanamori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kanamori, K., Tsuge, K. (2012). Inorganic Chemistry of Vanadium. In: Michibata, H. (eds) Vanadium. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0913-3_1

Download citation

Publish with us

Policies and ethics