Skip to main content

Advertisement

Log in

Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lignocellulose biomass predominantly constitutes the main feedstock for pulp and paper industry. Though some products of pulp and paper industry require the presence of lignin content, for most of the useful products formation lies in the efficient and selective removal of lignin component to make use of the intact cellulose fraction during the pretreatment of pulp. Lignin is a recalcitrant heteropolymer comprised of several complex stable bonds and linkages. The chemicals or intense energy processes used for delignification process release the hazardous chemicals compounds in the wastewater which cause toxicity and environmental pollution. The implementation of bacterial species has elucidated an effective approach in the generation of value-added products while degrading lignin from pulp biomass as well as detoxification of effluent. The direct use of bacterial cells in lignocellulose biomass and wastewater streams is promising as it outperforms the practical and technical constraints largely confronted by fungal and enzymatic means. The present review paper thus unleashed the potential of ligninolytic bacteria towards delignification of pulp biomass and treatment of effluent together with bioconversion of biomass and lignin into value-added products.

Schematic illustration of potential possible contribution of ligninolytic bacteria towards pulp and paper industry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abhishek A, Dwivedi A, Tandan N, Kumar U (2015) Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites. Appl Water Sci. doi:10.1007/s13201-015-0288-9

    Google Scholar 

  • Adler E (1977) Lignin chemistry - past, present and future. Wood Sci Technol 11(3):169–218

    Article  CAS  Google Scholar 

  • Agrawal S, Yadav RD, Mahajan R (2016) Synergistic effect of xylano-pectinolytic enzymes produced by a bacterial isolate in bleaching of plywood industrial waste. J Clean Prod 118:229–233

    Article  CAS  Google Scholar 

  • Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50:5096–5107

    Article  CAS  Google Scholar 

  • Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GR, Bugg TDH (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst 6:815–821

    Article  CAS  Google Scholar 

  • Akin DE, Sethuraman A, Morrison WH, Martin SA, Eriksson KE (1993) Microbial delignification with white-rot fungi improves forage digestibility. Appl Environ Microb 59:4274–4282

    CAS  Google Scholar 

  • Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Babuponnusami A, Muthukumar K (2012) Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Sep Purif Technol 98:130–135

    Article  CAS  Google Scholar 

  • Bains J, Capalash N, Sharma P (2003) Laccase from a non-melanogenic, alkalotolerant γ-proteobacterium JB isolated from industrial wastewater drained soil. Biotechnol Lett 25(14):1155–1159

    Article  CAS  Google Scholar 

  • Balcioglu IA, Tarlan E, Kivilcımdan C, Sacan MT (2007) Merits of ozonation and catalytic ozonation pre-treatment in the algal treatment of pulp and paper mill effluents. J Environ Manag 85:918–926

    Article  CAS  Google Scholar 

  • Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1

    Article  CAS  Google Scholar 

  • Banat IMP, Singh ND, Marchant R (1996) Microbial decolorization of textile dye-Containting effluents: a review. Bioresour Technol 58:217

    Article  CAS  Google Scholar 

  • Bandounas L, Pinkse M, Winde JHD, Ruijssenaars HJ (2013) Identification of a quinone dehydrogenase from a Bacillus sp. involved in the decolourization of the lignin-model dye, azure B. New Biotechnol 30:196–204

    Article  CAS  Google Scholar 

  • Baroutian S, Smit AM, Gapes DJ (2013) Relative influence of process variables during non-catalytic wet oxidation of municipal sludge. Bioresour Technol 148:605–610

    Article  CAS  Google Scholar 

  • Beg QK, Kappor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Bim A, Franco T (2000) Extraction in aqueous two phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. J Chromatogr B 743:349–356

    Article  CAS  Google Scholar 

  • Brannvall E (2009) Overview of pulp and paper processes. In: Elk M, Gellerstedt G, Henriksson G (eds) Pulp and paper chemistry and technology, second edn. De Gruyter, Berlin, pp. 1–12

    Google Scholar 

  • Bridgwater T (2006) Biomass for energy. J Sci Food Agric 86:1755–1768

    Article  CAS  Google Scholar 

  • Brown ME, Barros T, Chang MCY (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7:2074–2081

    Article  CAS  Google Scholar 

  • Brunow G, Lundquist K, Gellerstedt G (1999) Lignin. In: Sjöström E, Alén R (eds) Analytical methods in wood chemistry, pulping, and papermaking. Springer-Verlag, Berlin, Heidelberg, pp. 77–124

  • Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:1–7

    Article  CAS  Google Scholar 

  • Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin and process chemistry. Ind Crop Prod 20:131–141

    Article  CAS  Google Scholar 

  • Chandra R, Singh R (2012) Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    Article  CAS  Google Scholar 

  • Chandra R, Abhishek A, Sankhwar M (2011) Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. Bioresour Technol 102:6429–6436

    Article  CAS  Google Scholar 

  • Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846

    Article  CAS  Google Scholar 

  • Chandra R, Singh S, Reddy KMM, Patel DK, Purohit HJ, Kapley A (2008) Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste. J Gen Appl Microbiol 54:399–407

    Article  CAS  Google Scholar 

  • Chang YC, Choi DB, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol 152:429–436

    Article  CAS  Google Scholar 

  • Chanworrawoot K, Hunsom M (2012) Treatment of wastewater from pulp and paper mill industry by electrochemical methods in membrane reactor. J Environ Manag 113:399–406

    Article  CAS  Google Scholar 

  • Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, Zhang H (2012a) Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol 123:682–685

    Article  CAS  Google Scholar 

  • Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H (2012b) Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol 112(5):900–906

    Article  CAS  Google Scholar 

  • Chen M, Zeng G, Jiang M, Tan Z, Li H, Liu L, Zhu Y, Yu Z, Wei Z, Liu Y, Xie G (2011) Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile. PLoS One 6(9):e25647. doi:10.1371/journal.pone.0025647

    Article  CAS  Google Scholar 

  • Chuphal Y, Kumar V, Thakur IS (2005) Biodegradation and decolorization of pulp and paper mill effluent by anaerobic and aerobic microorganisms in a sequential bioreactor. World J Microbiol Biotechnol 21:1439–1445

    Article  CAS  Google Scholar 

  • Ciputra S, Antony A, Phillips R, Richardson D, Leslie G (2010) Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent. Chemosphere 81:86–91

    Article  CAS  Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511

    Article  CAS  Google Scholar 

  • Das MT, Budhraja V, Mishra M, Thakur IS (2012) Toxicological evaluation of paper mill sewage sediment treated by indigenous dibenzofuran-degrading Pseudomonas sp. Bioresour Technol 110:71–78

    Article  CAS  Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MHM, Fraaij MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Biol 50:245–276

    Article  CAS  Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Source 27:327–337

    Article  CAS  Google Scholar 

  • Dhillon A, Gupta JK, Jauhari BM, Khanna SA (2000) Cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Bioresour Technol 73:273–277

    Article  CAS  Google Scholar 

  • Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component- A laccase with enhanced thermostability properties. J Biol Chem 278(21):19416–19425

  • Escamilla-Treviño LL (2012) Potential of plants from the genus agave as bioenergy crops. Bioenergy Res 5:1–9

    Article  CAS  Google Scholar 

  • Eskelinen K, Sarkka H, Kurniawan TA, Sillanpaa MET (2010) Removal of recalcitrant contaminants from bleaching effluents in pulp and paper mills using ultrasonic irradiation and Fenton-like oxidation, electrochemical treatment, and/or chemical precipitation: a comparative study. Desalination 255:179–187

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood Chemistry, Ultrastructure, Reactions. Berlin New York

  • Fornell R, Berntsson T, Åsblad A (2012) Process integration study of a kraft pulp mill converted to an ethanol production plant-part B: techno-economic analysis. Appl Therm Eng 42:179–190

    Article  CAS  Google Scholar 

  • Freitas AC, Ferreira F, Costa AM, Pereira R, Antunes SC, Gonçalves F, Rocha-Santos TAP, Diniz MS, Castro L, Peres I, Duarte AC (2009) Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi. Sci Total Environ 407:3282–3289

    Article  CAS  Google Scholar 

  • Freudenberg K, Neish AC (1968) Constitution and biosynthesis of lignin. Springer-Verlag, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Garcia SG, Moreira T, Artal G, Maldonado L, Feijoo G (2010) Environmental impact assessment of non-wood based pulp production by soda-anthraquinone pulping process. J Clean Prod 18:137–145

    Article  CAS  Google Scholar 

  • Garg G, Dhiman SS, Mahajan R, Kaur A, Sharma J (2011) Bleach-boosting effect of crude xylanase from Bacillus stearothermophilus SDX on wheat straw pulp. New Biotechnol 28:58–64

    Article  CAS  Google Scholar 

  • Garg AP, Roberts JC, McCarthy AJ (1998) Bleach boosting effect of cellulase-free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood Kraft pulp. Enzym Microb Technol 22:594–598

    Article  CAS  Google Scholar 

  • Garg SK, Tripathi M, Kumar S, Singh SK, Singh SK (2012) Microbial dechlorination of chloroorganics and simultaneous decolorization of pulp–paper mill effluent by Pseudomonas putida MTCC 10510 augmentation. Environ Monit Assess 184:5533–5544

    Article  CAS  Google Scholar 

  • Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp. 201–224

    Chapter  Google Scholar 

  • Ghodake GS, Telke AA, Jadhav JP, Govindwar SP (2009) Potential of Brassica juncea in order to treat textile effluent contaminated sites. Int J Phytorem 11:297–312

    Article  Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26

    Article  CAS  Google Scholar 

  • Givaudan A, Effose A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase from Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210

    Article  CAS  Google Scholar 

  • Gosselink RJA, de Jong E, Guran B, Abacherli A (2004) Co-ordination network for lignin-standardization production and applications adapted to marked requirements (EUROLIGNIN. Ind Crop Prod 20:121–129

    Article  CAS  Google Scholar 

  • Gupta VK, Minocha AK, Jain N (2001) Batch and continuous studies on treatment of pulp mill waste water by Aeromonas formicans. J Chem Technol Biotechnol 76:547–552

    Article  CAS  Google Scholar 

  • Gutiérrez A, Rencoret J, Ibarra D, Molina S, Camarero S, Romero J, Río JCD, Martínez ÁT (2007) Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators. Environ Sci Technol 41(11):4124–4129

    Article  CAS  Google Scholar 

  • Hall ER, Robson PD, Prong CF, Chmelauskas AJ (1986) Evaluation of anaerobic treatment of NSSC wastewater. In: Proceedings 1985 TAPPI Environmental Conference, pp. 207–217

  • Haq I, Kumar S, Kumari V, Singh SK, Raj A (2016) Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent. J Hazard Mater 305:190–199

    Article  CAS  Google Scholar 

  • Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Appl Microbial Biot 18:350–357

    Article  CAS  Google Scholar 

  • Hay JXW, Wu TY, Ng BJ, Juan JC, Jahim JM (2016) Reusing pulp and paper mill effluent as a bioresource to produce biohydrogen through ultrasonicated Rhodobacter sphaeroides. Energy Convers Manag 113:273–280

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  Google Scholar 

  • Holtman KM, Chang HM, Jameel H, Kadla JF (2003) Elucidation of lignin structure through degradative methods: comparison of modified DFRC and thioacidolysis. J Agric Food Chem 51(12):3535–3540

    Article  CAS  Google Scholar 

  • Hooda R, Bhardwaj NK, Singh P (2015) Screening and identification of ligninolytic bacteria for the treatment of pulp and paper mill effluent. Water Air Soil Pollut 226:305

    Article  CAS  Google Scholar 

  • Huang Y, Wei XY, Zhou SG, Liu MY, Tu YY, Li A, et al. (2015) Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresour Technol 181:224–230

    Article  CAS  Google Scholar 

  • Jansekhar H, Brown C, Haltmeier T, Leisola M, Fiechter A (1982) Bioalteration of Kraft pine lignin by Phanerochaete chrysosporium. Arch Microbiol 132(1):14–21

    Article  Google Scholar 

  • Jönsson J, Ruohonen P, Michel G, Berntsson T (2011) The potential for steam savings and implementation of different biorefinery concepts in Scandinavian integrated TMP and paper mills. Appl Therm Eng 31:2107–2114

    Article  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  Google Scholar 

  • Karrasch B, Parra O, Cid H, Mehrens M, Pacheco P, Urrutia R, Valdovinos C, Zaror C (2006) Effect of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobio River Chile. Sci Total Environ 359:194–208

    Article  CAS  Google Scholar 

  • Katayama Y, Nishikawa S, Murayama A, Yamasaki M, Morohoshi N, Haraguchi T (1988) The metabolism of biphenyl structures in lignin by the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Lett 233:129–133.

  • Kaur A, Mahajan R, Singh A, Garg G, Sharma J (2010) Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101:9150–9155

    Article  CAS  Google Scholar 

  • Keele BB Jr, McCord JM, Fridovich I (1970) Superoxide dismutase from Escherichia coli B. J Biol Chem 245:6176–6181

    CAS  Google Scholar 

  • Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass potential for reducing severity of thermo-chemical biomass pretreatment. Appl Biochem Biotechnol 105:27–41

    Article  Google Scholar 

  • Khandeparkar RDS, Bhosle NB (2006) Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid state fermentation. Enzym Microb Technol 39:732–742

    Article  CAS  Google Scholar 

  • Kharayat Y, Thakur IS (2012) Isolation of bacterial strain from sediment Core of pulp and paper mill industries for production and purification of lignin peroxidase (LiP) enzyme. Biorem J 16(2):125–130

    Article  CAS  Google Scholar 

  • Kirkpatrick N, Reid ID, Ziomek E, Paice MG (1990) Biological bleaching of hardwood kraft pulp using Trametes (Coriolus) versicolor immobilized in polyurethane foam. Appl Microbiol Biotechnol 33:105–108

    Article  CAS  Google Scholar 

  • Koma D, Yamanaka H, Mo K (2012) Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol 78(17):6203

    Article  CAS  Google Scholar 

  • Kortekaas S, Vidal G, He YL, Lettinga G, Field JA (1998) Anaerobic-aerobic treatment of toxic pulping black liquor with upfront effluent recirculation. J Ferment Bioeng 86:97–110

    Article  CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls, Germany. In: Eriksson K-EL (ed) Advances in Biochemical Engineering Biotechnology, pp 46–125.

  • Kulkarni N, Abhay S, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  Google Scholar 

  • Kumar P, Chandra R (2006) Decolorization and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus sp. Bioresour Technol 7:2096–2102. doi:10.1016/j.biortech.2005.10.012

    Article  CAS  Google Scholar 

  • Kumar V, Dhall P, Naithani S, Kumar A, Kumar R (2014) Biological approach for the treatment of pulp and paper industry effluent in sequence batch reactor. J Bioremed Biodeg 5. doi:10.4172/2155-6199.1000218

  • Kumar M, Singh J, Singh MK, Singhal A, Thakur IS (2015) Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp ISTKB. Environ Sci Pollut Res 22:15690–157902

    Article  CAS  Google Scholar 

  • Lara MA, Malaver-Rodriguez AJ, Rojas OJ, Holmquist O, Gonzalez AM, Bullon J, Penaloza N, Araujo E (2003) Black liquor lignin biodegradation by Trametes elegans. Int Biodeterior Biodegrad 52:167–175

    Article  CAS  Google Scholar 

  • Lee FA, William CG (1987) Characterization of extracellular Mn2+-oxidizing protein from Leptothrix Discophora SS-1. J Bacteriol 169:1279–1285

    Article  Google Scholar 

  • Leple JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, et al. (2007) Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  CAS  Google Scholar 

  • Li A, Xia T, Xu W, Chen TT, Li XL, Fan J, et al. (2013) An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta 237:1585–1597

    Article  CAS  Google Scholar 

  • Majumdar S, Lukk T, Bauer S, Nair SK, Cronan JE, Gerlt JA (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53:4047–4058

    Article  CAS  Google Scholar 

  • Malherbe A, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114

    Article  CAS  Google Scholar 

  • Malik MK, Kumar P, Seth R, Rishi S (2009) Genotoxic effect of paper mill effluent on chromosomes of fish Channa punctatus. Curr World Environ 4(2):353–357

    CAS  Google Scholar 

  • Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162:453–459

    Article  CAS  Google Scholar 

  • Margot J, Bennati-Granier C, Maillard J, Blanquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63. doi:10.1186/2191-0855-3-63

    Article  CAS  Google Scholar 

  • Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15

    Article  CAS  Google Scholar 

  • Mathews SL, Grunden AM, Pawlak J (2016) Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. Int Biodeterior Biodegrad 110:79–86. doi:10.1016/j.ibiod.2016.02.012

    Article  CAS  Google Scholar 

  • Mathews SL, Pawlak JJ, Grunden AM (2014) Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste. Bioresour Technol 164:100–105

    Article  CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  Google Scholar 

  • Minussi RC, Pastore GM, Duran N (2007) Laccase induction in fungi and laccase/N–OH mediator systems applied in paper mill effluent. Bioresour Technol 98:158–164

    Article  CAS  Google Scholar 

  • Murillo-Luna JL, Garcés-Ayerbe C, Rivera-Torres P (2011) Barriers to the adoption of proactive environmental strategies. J Clean Prod 19:1417–1425

    Article  Google Scholar 

  • Nestmann ER, Lee EGH, Matula TI, Douglas GR, Mueller JC (1980) Mutagenicity of constituents identified in pulp and paper mill effluents using the Salmonella/mammalian-microsome assay. Mutat Res 79(3):203–212

    Article  CAS  Google Scholar 

  • Nishimura M, Ooi O, Davies J (2006) Isolation and characterization of Streptomyces sp. NL15-2 K capable of degrading lignin-related aromatic compounds. J Biosci Bioeng 102:124–127

    Article  CAS  Google Scholar 

  • Ogola HJO, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H, Sawa Y (2009) Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 75:7509–7518

    Article  CAS  Google Scholar 

  • Orrego R, Pandelides Z, Guchardi J, Holdway D (2011) Effects of pulp and paper mill effluent extracts on liver anaerobic and aerobic. Ecotoxicol Environ Saf 74:761–768

    Article  CAS  Google Scholar 

  • Paice MG, Bernier R Jr, Jurasek L (1988) Viscosity enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol Bioeng 32:235–239

    Article  CAS  Google Scholar 

  • Paliwal R, Uniyal S, Rai J (2015a) Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation. Environ Sci Pollut Res 22:6842–6853

    Article  CAS  Google Scholar 

  • Paliwal R, Uniyal S, Verma M, Kumar A, Rai J (2015b) Process optimization for biodegradation of black liquor by immobilized novel bacterial consortium. Desalin Water Treat: 1–12. doi: 10.1080/19443994.2015.1092892

  • Patel RN, Grabski AC, Jeffries TW (1993) Chromophore release from kraft pulp by purified Streptomyces roseiscleroticus xylanases. Appl Microbiol Biotechnol 39:405–412

    Article  CAS  Google Scholar 

  • Pawar SS, Nkemka VN, Zeidan AA, Murto M, Niel Ed WJV (2013) Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process. Int J Hydrogen Energy 38:9121–9130

  • Phillips RB, Jameel H, Chang HM (2013) Integration of pulp and paper technology with bioethanol production. Biotechnol Biofuels 6:13

    Article  CAS  Google Scholar 

  • Pintar A, Besson M, Gallezot P, Gibert J, Martin D (2004) Toxicity to Daphnia magna and Vibrio fischeri of kraft bleach plant effluents treated by catalytic wet-air oxidation. Water Res 38:289–300

    Article  CAS  Google Scholar 

  • Potumarthi R, Baadhe RR, Nayak P, Jetty A (2013) Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour Technol 128:113–117

    Article  CAS  Google Scholar 

  • Priyadarshinee R, Kumar A, Mandal T, Dasguptamandal D (2015) Improving the perspective of raw eucalyptus kraft pulp for industrial applications through autochthonous bacterial mediated delignification. Ind Crop Prod 74:293–303

    Article  CAS  Google Scholar 

  • Puro L, Kallioinen M, Mänttäri M, Natarajan G, Cameron DC, Nystrom M (2010) Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters. Desalination 264:249–255

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344. doi:10.1126/science.1246843

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Rahi DK, Rahi S, Pandey AK, Rajak RC (2009) Enzymes from mushrooms and their industrial applications. In: Rai M (ed) Adv. Fungal Biotechnol. I.K. International Publishing House Pvt Ltd, New Delhi, pp. 136–184

  • Rahman NHA, Rahman NAA, Aziz SA, Hassan MA (2013) Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. Bioresources 8(4):6136–6150

    Google Scholar 

  • Rahmanpour R, Rea D, Jamshidi S, Fülop V, Bugg TDH (2016) Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Arch Biochem Biophys 594:54–60

    Article  CAS  Google Scholar 

  • Rai H, Bhattacharya M, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35:219

    Article  CAS  Google Scholar 

  • Raj A, Kumar S, Haq I, Singh SK (2014) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 71:355–362

    Article  Google Scholar 

  • Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54(12):3057–3063

    CAS  Google Scholar 

  • Rashid GMM, Taylor CR, Liu Y, Zhang X, Rea D, Fülöp V, Bugg TDH (2015) Identification of manganese superoxide dismutase from Sphingobacterium sp. T2 as a novel bacterial enzyme for lignin oxidation. ACS Chem Biol 10:2286–2294

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27

    Article  CAS  Google Scholar 

  • Renugadevi R, Ayyappadas MP, Preethy PH, Savetha S (2011) Isolation, screening and induction of mutation in strain for extracellular lignin peroxidase producing bacteria from soil and its partial purification. J Res Biol 4:312–318

    Google Scholar 

  • Roberts JN, Singh R, Grigg JC, Murphy MEP, Bugg TDH, Eltis LD (2011) Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry 50(23):5108–5119

    Article  CAS  Google Scholar 

  • Rohella RS, Sahoo N, Paul SC, Choudhury S, Chakravortty V (1996) Thermal studies on isolated and purified lignin. Thermochim Acta 287:131–138

    Article  CAS  Google Scholar 

  • S’anchez C (2009a) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Saleem M, Tabassum MR, Yasmin R, Imran M (2009) Potential of xylanase from thermophilic Bacillus sp. XTR-10 in biobleaching of wood kraft pulp. Int Biodeterior Biodegrad 63:1119–1124

    Article  CAS  Google Scholar 

  • Santhanam N, Vivanco JM, Decker SR, Reardon KF (2011) Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29:480–489

    Article  CAS  Google Scholar 

  • Santos A, Mendes S, Brissos V, Martins LO (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl Microbiol Biotechnol 98(5):2053–2065

    Article  CAS  Google Scholar 

  • Saraswathi R, Saseetharan MK (2010) Investigation on microorganisms and their degradation efficiency in paper and pulp mill effluent. J Water Resour Prot 2:660–664

    Article  CAS  Google Scholar 

  • Selvam K, Priya MS, Arungandhi K (2011) Pretreatment of wood chips and pulps with Thelephora sp. to reduce chemical consumption in paper industries. Int J Chem Technol Res 3:471–476

    CAS  Google Scholar 

  • Sharma AK, Sharma C, Mullick SC, Kandpal TC (2016) Carbon mitigation potential of solar industrial process heating: paper industry in India. J Clean Prod 112:1683–1691

    Article  CAS  Google Scholar 

  • Sharma P, Sood C, Singh G, Capalash N (2015) An eco-friendly process for biobleaching of eucalyptus kraft pulp with xylanase producing Bacillus halodurans. J Clean Prod 87:966–970

    Article  CAS  Google Scholar 

  • Shawwa AR, Smith DW, Sego DC (2001) Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke. Water Res 35:745–749

    Article  CAS  Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Yuehui C, Zheng Y (2013a) Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels 6:1. doi:10.1186/1754-6834-6-1

    Article  CAS  Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q (2013b) Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioproc Biosyst Eng 36:1957–1965

    Article  CAS  Google Scholar 

  • Shintani N, Shoda M (2013) Decolorization of oxygen-delignified bleaching effluent and biobleaching of oxygen-delignified kraft pulp by non-white-rot fungus Geotrichum candidum Dec 1. J Environ Sci 25:164–168

    Article  Google Scholar 

  • Singh S, Chandra R, Patel DK, Reddy MMK, Rai V (2008) Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture. Bioresour Technol 99:5703–5709

    Article  CAS  Google Scholar 

  • Singh YP, Dhall P, Mathur RM, Jain RK, Thakur VV, Kumar V, Kumar R, Kumar A (2011) Bioremediation of pulp and paper mill effluent by tannic acid degrading Enterobacter sp. Water Air Soil Pollut 218:693–701

    Article  CAS  Google Scholar 

  • Singhal A, Thakur IS (2009a) Decolorization and detoxification of pulp paper effluent by Cryptococcus sp. Biochem Eng J 46(1):21–27

    Article  CAS  Google Scholar 

  • Singhal A, Thakur IS (2009b) Decolourization and detoxification of pulp and paper mill effluent by Emericella nidulans var. nidulans. J Hazard Mater 171:619–625

    Article  CAS  Google Scholar 

  • Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2000) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. J Biol Chem 282:36652–36658

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulose materials for ethanol production: a review. Bioresour Technol 82:1–11

    Article  Google Scholar 

  • Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decolorization of textile dyes. Enzym Microb Technol 24:130–137

    Article  CAS  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with P. ostreatus for enzyme hydrolysis of rice straw. J Biosci Bioeng 100:637–643

    Article  CAS  Google Scholar 

  • Taylor CR, Hardiman EM, Ahmad M, Sainsbury PD, Norris PR, Bugg TDH (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113:521–530

    Article  CAS  Google Scholar 

  • Uğurlu M, Karaoğlu MH (2009) Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst. Environ Sci Pollut Res 16(3):265–273

    Article  CAS  Google Scholar 

  • Ugurlu M, Gürses A, Doğar C, Yalçin M (2008) The removal of lignin and phenol from paper mill effluents by electrocoagulation. J Environ Manag 87(3):420–428

    Article  CAS  Google Scholar 

  • Vieira MC, Heinze TH, Antonio-Cruz R, Mendoza-Martinez AM (2002) Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and fourcroydes. Cellulose 9:203–212

    Article  CAS  Google Scholar 

  • Wang D, Lin Y, Du W, Liang J, Ning Y (2013a) Optimization and characterization of lignosulfonate biodegradation process by a bacterial strain, Sphingobacterium sp. HY-H. Int Biodeterior Biodegrad 85:365–371

    Article  CAS  Google Scholar 

  • Wang Y, Liu Q, Yan L, Gao Y, Wang Y, Wang W (2013b) A novel lignin degradation bacterial consortium for efficient pulping. Bioresour Technol 139:113–119

    Article  CAS  Google Scholar 

  • Wang WD, Yan L, Cui ZJ (2011) ) characterization of a microbial consortium capable of degrading lignocellulose. Bioresour Technol 120:9321–9324

    Article  CAS  Google Scholar 

  • Wu J, Xiao YZ, Yu HQ (2005) Degradation of lignin in pulp mill wastewaters by white rot fungi on biofilm. Bioresour Technol 96:1357–1363

    Article  CAS  Google Scholar 

  • Yadav S, Chandra R (2012) Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolorization by a potential bacterial consortium. Biodegradation 23:609–620. doi:10.1007/s10532-012-9537-x

    Article  CAS  Google Scholar 

  • Yadav S, Chandra R (2015) Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry. J Environ Sci 33:229–238

    Article  Google Scholar 

  • Yan L, Gao Y, Wang Y, Liu Q, Sun Z, Fu B, Wen X, Cui Z, Wang W (2012) Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour Technol 111:49–54

    Article  CAS  Google Scholar 

  • Yang C, Cao G, Li Y, Zhang X, Ren H, Wang X, Feng J, Zhao L, Xu P (2008) A constructed alkaline consortium and its dynamics in treating alkaline black liquor with very high pollution load. PLoS One 3(11):e3777. doi:10.1371/journal.pone.0003777

    Article  CAS  Google Scholar 

  • Yang JS, Ni JR, Yuan HL, Wang ET (2007) Biodegradation of three different wood chips by Pseudomonas sp. PKE117. Int Biodeterior Biodegrad 60:90–95

    Article  CAS  Google Scholar 

  • Yang YS, Zhou JT, Lu H, Yuan YL, Zhao LH (2011) Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Biodegrad 22:1017–1027

    Article  CAS  Google Scholar 

  • Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  • Zhang Y, Arends YBA, Wiele TVD, Boon N (2011) Bioreactor technology in marine microbiology: from design to future application. Biotechnol Adv 29:312–321

    Article  CAS  Google Scholar 

  • Zhang XY, CY X, Wang HX (2007) Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng 104:149–151

    Article  CAS  Google Scholar 

  • Zheng H, Liu Y, Liu X, Han Y, Wang J, Lu F (2012) Overexpression of a Paenibacillus campinasensis xylanase in Bacillus megaterium and its applications to biobleaching of cotton stalk pulp and saccharification of recycled paper sludge. Bioresour Technol 125:182–187

    Article  CAS  Google Scholar 

  • Zhu XL, Wang J, Jiang YL, Cheng YJ, Chen F, Ding SB (2012) Feasibility study on satisfying standard of water pollutants for pulp and paper industry. Appl Mech Mater 178–181:637–640

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors express the sincerest gratitude to the Department of Biotechnology (DBT), New Delhi, India, for financial support under the frame of the project “Development of a green technology for improvement of paper quality and minimize the generation of genotoxic effluent” (no. BT/PR/14808/BCE/08/840/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Dasguptamandal.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshinee, R., Kumar, A., Mandal, T. et al. Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights. Environ Sci Pollut Res 23, 23349–23368 (2016). https://doi.org/10.1007/s11356-016-7633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7633-x

Keywords

Navigation