Skip to main content
Log in

Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Combustion-derived nanoparticles as constituents of ambient particulate matter have been shown to induce adverse health effects due to inhalation. However, the components inducing these effects as well as the biological mechanisms are still not fully understood. The fine fraction of fly ash particles collected from the electrostatic precipitator of a municipal solid waste incinerator was taken as an example for real particles with complex composition released into the atmosphere to study the mechanism of early biological responses of BEAS-2B human lung epithelial cells. The studies include the effects of the water-soluble and -insoluble fractions of the fly ash and the well-studied carbon black nanoparticles were used as a reference. Fly ash induced reactive oxygen species (ROS) and increased the total cellular glutathione (tGSH) content. Carbon black also induced ROS generation; however, in contrast to the fly ash, it decreased the intracellular tGSH. The fly ash-induced oxidative stress was correlated with induction of the anti-oxidant enzyme heme oxygenase-1 and increase of the redox-sensitive transcription factor Nrf2. Carbon black was not able to induce HO-1. ROS generation, tGSH increase and HO-1 induction were only induced by the insoluble fraction of the fly ash, not by the water-soluble fraction. ROS generation and HO-1 induction were markedly inhibited by pre-incubation of the cells with the anti-oxidant N-acetyl cysteine which confirmed the involvement of oxidative stress. Both effects were also reduced by the metal chelator deferoxamine indicating a contribution of bioavailable transition metals. In summary, both fly ash and carbon black induce ROS but only fly ash induced an increase of intracellular tGSH and HO-1 production. Bioavailable transition metals in the solid water-insoluble matrix of the fly ash mostly contribute to the effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ibald-Mulli A, Wichmann HE, Kreyling W, Peters A (2002) Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med 15:189–201

    Article  CAS  Google Scholar 

  2. Schulz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, Radykewicz R, Stampfl A, Thorand B, Peters A (2005) Cardiovascular effects of fine and ultrafine particles. J Aerosol Med 18:1–22

    Article  CAS  Google Scholar 

  3. Pope CA III, Muhlestein JB, May HT, Renlund DG, Anderson JL, Horne BD (2006) Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 114:2443–2448

    Article  CAS  Google Scholar 

  4. Pope CA III, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    Article  CAS  Google Scholar 

  5. Araujo JA, Barajas B, Kleinman M, Wang X, Bennett BJ, Gong KW, Navab M, Harkema J, Sioutas C, Lusis AJ, Nel AE (2008) Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 102:589–596

    Article  CAS  Google Scholar 

  6. van Maanen JM, Borm PJ, Knaapen A, van Herwijnen M, Schilderman PA, Smith KR, Aust AE, Tomatis M, Fubini B (1999) In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhal Toxicol 11:1123–1141

    Article  Google Scholar 

  7. Chandler AJ, Eighmy TT, Hartlén J, Hjelmar O, Kosson DS, Sawell SE, van der Sloot HA, Vehlow J (1997) Municipal solid waste incinerator residues. Elsevier, Amsterdam

    Google Scholar 

  8. Lighty JS, Veranth JM, Sarofim AF (2000) Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc 50:1565–1618

    CAS  Google Scholar 

  9. Fisher GL, McNeill KL, Prentice BA, McFarland AR (1983) Physical and biological studies of coal and oil fly ash. Environ Health Perspect 51:181–186

    Article  CAS  Google Scholar 

  10. Pritchard RJ, Ghio AJ, Lehmann JR, Winsett DW, Tepper JS, Park P, Gilmour MI, Dreher KL, Costa DL (1996) Oxidant generation and lung injury after particulate air pollutant exposure increase with the concentrations of associated metals. Inhal Toxicol 8:457–477

    Article  CAS  Google Scholar 

  11. Dreher KL, Jaskot RH, Lehmann JR, Richards JH, Mcgee JK, Ghio AJ, Costa DL (1997) Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health 50:285–305

    Article  CAS  Google Scholar 

  12. Goldsmith CA, Imrich A, Danaee H, Ning YY, Kobzik L (1998) Analysis of air pollution particulate-mediated oxidant stress in alveolar macrophages. J Toxicol Environ Health A 54:529–545

    Article  CAS  Google Scholar 

  13. Smith KR, Veranth JM, Lighty JS, Aust AE (1998) Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal. Chem Res Toxicol 11:1494–1500

    Article  CAS  Google Scholar 

  14. Smith KR, Veranth JM, Hu AA, Lighty JS, Aust AE (2000) Interleukin-8 levels in human lung epithelial cells are increased in response to coal fly ash and vary with the bioavailability of iron, as a function of particle size and source of coal. Chem Res Toxicol 13:118–125

    Article  CAS  Google Scholar 

  15. Ghio AJ, Kim C, Devlin RB (2000) Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 162:981–988

    CAS  Google Scholar 

  16. Ghio AJ, Devlin RB (2001) Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med 164:704–708

    CAS  Google Scholar 

  17. Jung H, Guo B, Anastasio C, Kennedy IM (2006) Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid. Atmos Environ 40:1043–1052

    Article  CAS  Google Scholar 

  18. Mauderly JL, Snipes MB, Barr EB, Belinsky SA, Bond JA, Brooks AL, Chang IY, Cheng YS, Gillett NA, Griffith WC, . (1994) Pulmonary toxicity of inhaled diesel exhaust and carbon black in chronically exposed rats. Part I: Neoplastic and nonneoplastic lung lesions. Res. Rep. Health Eff. Inst.1–75.

  19. Brockmann M, Fischer M, Muller KM (1998) Exposure to carbon black: a cancer risk? Int Arch Occup Environ Health 71:85–99

    Article  CAS  Google Scholar 

  20. Gardiner K, Trethowan NW, Harrington JM, Rossiter CE, Calvert IA (1993) Respiratory health effects of carbon black: a survey of European carbon black workers. Br J Ind Med 50:1082–1096

    CAS  Google Scholar 

  21. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  22. Xia T, Kovochich M, Nel A (2006) The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clin Occup Environ Med 5:817–836

    Google Scholar 

  23. Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2010) Nanoparticles: molecular targets and cell signalling. Arch. Toxicol

  24. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309

    Article  CAS  Google Scholar 

  25. Fritsch S, Diabaté S, Krug HF (2006) Incinerator fly ash provokes alteration of redox equilibrium and liberation of arachidonic acid in vitro. Biol Chem 387:1421–1428

    Article  CAS  Google Scholar 

  26. Diabaté S, Mülhopt S, Paur HR, Krug HF (2008) The response of a co-culture lung model to fine and ultrafine particles of incinerator fly ash at the air–liquid interface. Altern Lab Anim 36:285–298

    Google Scholar 

  27. Kinnula VL, Yankaskas JR, Chang L, Virtanen I, Linnala A, Kang BH, Crapo JD (1994) Primary and immortalized (BEAS 2B) human bronchial epithelial cells have significant antioxidative capacity in vitro. Am J Respir Cell Mol Biol 11:568–576

    CAS  Google Scholar 

  28. Diabaté S, Mülhopt S, Paur HR, Krug HF (2002) Pro-inflammatory effects in lung cells after exposure to fly ash aerosol via the atmosphere or the liquid phase. Ann Occup Hyg 46:382–385

    Google Scholar 

  29. Reddel RR, De Silva R, Duncan EL, Rogan EM, Whitaker NJ, Zahra DG, Ke Y, McMenamin MG, Gerwin BI, Harris CC (1995) SV40-induced immortalization and ras-transformation of human bronchial epithelial cells. Int J Cancer 61:199–205

    Article  CAS  Google Scholar 

  30. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V (2002) Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184:172–179

    Article  CAS  Google Scholar 

  31. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  Google Scholar 

  32. Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190:360–365

    Article  CAS  Google Scholar 

  33. Halliwell B, Gutteridge J (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  34. Rahman I, MacNee W (2000) Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16:534–554

    Article  CAS  Google Scholar 

  35. Fritsch-Decker S, Both T, Weiss C, Diabaté S (2011) Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles. Particle and Fibre Toxicology, in press.

  36. Ondov JM, Wexler AS (1998) Where do particulate toxins reside? An improved paradigm for the structure and dynamics of the urban mid-Atlantic aerosol. Environ Sci Technol 32:2547–2555

    Article  CAS  Google Scholar 

  37. Jones T, Brown P, BeruBe K, Wlodarczyk A, Longyi S (2010) The physicochemistry and toxicology of CFA particles. J Toxicol Environ Health A 73:341–354

    Article  CAS  Google Scholar 

  38. Ghio AJ, Stonehuerner J, Dailey LA, Carter JD (1999) Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhal Toxicol 11:37–49

    Article  CAS  Google Scholar 

  39. Diabaté S, Mülhopt S, Paur HR, Wottrich R, Krug HF (2002) In vitro effects of incinerator fly ash on pulmonary macrophages and epithelial cells. Int J Hyg Environ Health 204:323–326

    Article  Google Scholar 

  40. Lewis AB, Taylor MD, Roberts JR, Leonard SS, Shi X, Antonini JM (2003) Role of metal-induced reactive oxygen species generation in lung responses caused by residual oil fly ash. J Biosci 28:13–18

    Article  CAS  Google Scholar 

  41. Ning Y, Tao F, Qin G, Imrich A, Goldsmith CA, Yang Z, Kobzik L (2004) Particle-epithelial interaction: effect of priming and bystander neutrophils on interleukin-8 release. Am J Respir Cell Mol Biol 30:744–750

    Article  CAS  Google Scholar 

  42. Imrich A, Ning Y, Kobzik L (2000) Insoluble components of concentrated air particles mediate alveolar macrophage responses in vitro. Toxicol Appl Pharmacol 167:140–150

    Article  CAS  Google Scholar 

  43. Hetland RB, Myhre O, Lag M, Hongve D, Schwarze PE, Refsnes M (2001) Importance of soluble metals and reactive oxygen species for cytokine release induced by mineral particles. Toxicology 165:133–144

    Article  CAS  Google Scholar 

  44. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    Article  CAS  Google Scholar 

  45. Studer AM, Limbach LK, Van DL, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–174

    Article  CAS  Google Scholar 

  46. Schwerdtle T, Ebert F, Thuy C, Richter C, Mullenders LH, Hartwig A (2010) Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair. Chem Res Toxicol 23:432–442

    Article  CAS  Google Scholar 

  47. Schwerdtle T, Hartwig A (2006) Bioavailability and genotoxicity of soluble and particulate nickel compounds in cultured human lung cells. Materialwiss Werkstofftech 37:521–525

    Article  CAS  Google Scholar 

  48. Beck-Speier I, Kreyling WG, Maier KL, Dayal N, Schladweiler MC, Mayer P, Semmler-Behnke M, Kodavanti UP (2009) Soluble iron modulates iron oxide particle-induced inflammatory responses via prostaglandin E2 synthesis: in vitro and in vivo studies. Part Fibre Toxicol 6:34

    Article  Google Scholar 

  49. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  Google Scholar 

  50. Voelkel K, Krug HF, Diabaté S (2003) Formation of reactive oxygen species in rat epithelial cells upon stimulation with fly ash. J Biosci 28:51–55

    Article  CAS  Google Scholar 

  51. Foucaud L, Wilson MR, Brown DM, Stone V (2007) Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9

    Article  CAS  Google Scholar 

  52. Beck-Speier I, Dayal N, Karg E, Maier KL, Schumann G, Schulz H, Semmler M, Takenaka S, Stettmaier K, Bors W, Ghio A, Samet JM, Heyder J (2005) Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic Biol Med 38:1080–1092

    Article  CAS  Google Scholar 

  53. Koike E, Kobayashi T (2006) Chemical and biological oxidative effects of carbon black nanoparticles. Chemosphere 65:946–951

    Article  CAS  Google Scholar 

  54. Dickinson DA, Levonen AL, Moellering DR, Arnold EK, Zhang H, Darley-Usmar VM, Forman HJ (2004) Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic Biol Med 37:1152–1159

    Article  CAS  Google Scholar 

  55. Biswas SK, Rahman I (2009) Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Mol Aspects Med 30:60–76

    Article  CAS  Google Scholar 

  56. Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K (2007) The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–615

    Article  CAS  Google Scholar 

  57. Li XY, Brown D, Smith S, MacNee W, Donaldson K (1999) Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol 11:709–731

    Article  Google Scholar 

  58. Prabhulkar S, Li CZ (2010) Assessment of oxidative DNA damage and repair at single cellular level via real-time monitoring of 8-OHdG biomarker. Biosens Bioelectron 26:1743–1749

    Article  CAS  Google Scholar 

  59. Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ (2005) Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal 7:42–59

    Article  CAS  Google Scholar 

  60. Newland N, Richter A (2008) Agents associated with lung inflammation induce similar responses in NCI-H292 lung epithelial cells. Toxicol In Vitro 22:1782–1788

    Article  CAS  Google Scholar 

  61. Foucaud L, Goulaouic S, Bennasroune A, Laval-Gilly P, Brown D, Stone V, Falla J (2010) Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule? Toxicol In Vitro 24:1512–1520

    Article  CAS  Google Scholar 

  62. Wilson MR, Foucaud L, Barlow PG, Hutchison GR, Sales J, Simpson RJ, Stone V (2007) Nanoparticle interactions with zinc and iron: implications for toxicology and inflammation. Toxicol Appl Pharmacol 225:80–89

    Article  CAS  Google Scholar 

  63. Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  CAS  Google Scholar 

  64. Ernst H, Rittinghausen S, Bartsch W, Creutzenberg O, Dasenbrock C, Gorlitz BD, Hecht M, Kairies U, Muhle H, Muller M, Heinrich U, Pott F (2002) Pulmonary inflammation in rats after intratracheal instillation of quartz, amorphous SiO2, carbon black, and coal dust and the influence of poly-2-vinylpyridine-N-oxide (PVNO). Exp Toxicol Pathol 54:109–126

    Article  CAS  Google Scholar 

  65. Lu S, Duffin R, Poland C, Daly P, Murphy F, Drost E, MacNee W, Stone V, Donaldson K (2009) Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 117:241–247

    CAS  Google Scholar 

  66. Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K (1995) Chronic inhalation exposure of Wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon-black, and titanium-dioxide. Inhal Toxicol 7:533–556

    Article  CAS  Google Scholar 

  67. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  CAS  Google Scholar 

  68. Li N, Alam J, Venkatesan MI, Eiguren-Fernandez A, Schmitz D, Di Stefano E, Slaughter N, Killeen E, Wang X, Huang A, Wang M, Miguel AH, Cho A, Sioutas C, Nel AE (2004) Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals. J Immunol 173:3467–3481

    CAS  Google Scholar 

  69. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  70. Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77–83

    Article  CAS  Google Scholar 

  71. Lenz AG, Karg E, Lentner B, Dittrich V, Brandenberger C, Rothen-Rutishauser B, Schulz H, Ferron GA, Schmid O (2009) A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol 6:32

    Article  Google Scholar 

  72. Wu W, Samet JM, Peden DB, Bromberg PA (2010) Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ Health Perspect 118:982–987

    Article  CAS  Google Scholar 

  73. Lin WS, Xu Y, Huang CC, Ma YF, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39

    Article  CAS  Google Scholar 

  74. Vargas H, Castillo C, Posadas F, Escalante B (2003) Acute lead exposure induces renal haeme oxygenase-1 and decreases urinary Na+ excretion. Hum Exp Toxicol 22:237–244

    Article  CAS  Google Scholar 

  75. Lund LG, Aust AE (1992) Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA. Carcinogenesis 13:637–642

    Article  CAS  Google Scholar 

  76. Tao F, Gonzalez-Flecha B, Kobzik L (2003) Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med 35:327–340

    Article  CAS  Google Scholar 

  77. Guo L, Morris DG, Liu XY, Vaslet C, Hurt RH, Kane AB (2007) Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater 19:3472–3478

    Article  CAS  Google Scholar 

  78. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100

    Article  CAS  Google Scholar 

  79. Adamson IY, Prieditis H, Hedgecock C, Vincent R (2000) Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicol Appl Pharmacol 166:111–119

    Article  CAS  Google Scholar 

  80. Councell TB, Duckenfield KU, Landa ER, Callender E (2004) Tire-wear particles as a source of zinc to the environment. Environ Sci Technol 38:4206–4214

    Article  CAS  Google Scholar 

  81. Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Sparer J, Beckett WS (2000) Characterization of clinical tolerance to inhaled zinc oxide in naive subjects and sheet metal workers. J Occup Environ Med 42:1085–1091

    Article  CAS  Google Scholar 

  82. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tanja Both and Tanja Detzel for their excellent technical assistance in the cell culture and biological analyses, Hanns-Rudolf Paur and Sonja Mülhopt for providing the fly ash, and Klaus Jay for the PCDD/PCDF analyses. Funding for this study was partly provided by the Federal Institute for Risk Assessment (BfR), Germany, (BfR-ZEBET-1238-182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Diabaté.

Additional information

Published in the special issue Aerosol Analysis with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diabaté, S., Bergfeldt, B., Plaumann, D. et al. Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells. Anal Bioanal Chem 401, 3197–3212 (2011). https://doi.org/10.1007/s00216-011-5102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5102-4

Keywords

Navigation