Skip to main content
Log in

Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions?

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to changing global climatic conditions, a lot of attention has been given to cyanobacteria and their bioactive secondary metabolites. These conditions are expected to increase the frequency of cyanobacterial blooms, and consequently, the concentrations of cyanotoxins in aquatic ecosystems. Unfortunately, there are very few studies that address the effects of cyanotoxins on the physiology of phytoplankton species under different environmental conditions. In the present study, we investigated the effect of the cyanotoxin anatoxin-a (ATX-A) on Microcystis aeruginosa (cyanobacteria) and Acutodesmus acuminatus (chlorophyta) under varying light and nitrogen conditions. Low light (LL) and nitrogen limitation (LN) resulted in significant cell density reduction of the two species, while the effect of ATX-A on M. aeruginosa was not significant. However, under normal (NN) and high nitrogen (HN) concentrations, exposure to ATX-A resulted in significantly (p < 0.05) lower cell density of A. acuminatus. Pigment content of M. aeruginosa significantly (p < 0.05) declined in the presence of ATX-A, regardless of the light condition. Under each light condition, exposure to ATX-A caused a reduction in total microcystin (MC) content of M. aeruginosa. The detected MC levels varied as a function of nitrogen and ATX-A concentrations. The production of reactive oxygen species (H2O2) and antioxidant enzyme activities of both species were significantly altered by ATX-A under different light and nitrogen conditions. Our results revealed that under different light and nitrogen conditions, the response of M. aeruginosa and A. acuminatus to ATX-A was variable, which demonstrated the need for different endpoints of environmental factors during ecotoxicological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Sammak MA, Hoagland KD, Cassada D, Snow DD (2014) Co-occurrence of the cyanotoxins BMAA, DBA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 6:488–508

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:235–241

    Article  Google Scholar 

  • Babica P, Kohoutek J, Bláha L, Adamovsky O, Marsálek B (2006) Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Anal Bioanal Chem 85:1545–1551

    Article  Google Scholar 

  • Bártova K, Hilscherova K, Babica P, Marsalek B, Bláha L (2011) Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor herbicide paraquat. Environ Toxicol 26:641–648

    Article  Google Scholar 

  • Bittencourt-Oliveira MC, Chia AM, de Oliveira HSB, Cordeiro-Araújo MK, Molica RJR, Dias CTS (2015) Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27:275–284

    Article  CAS  Google Scholar 

  • Bláhová L, Oravec M, Marsálek B, Sejnohová L, Simek Z, Bláha L (2009) The first occurrence of the cyanobacterial alkaloi toxin cylindrospermopsin in the Czech Republic as determined by immunochemical and LC/MS methods. Toxicon 53:519–524

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  Google Scholar 

  • Botes DP, Wessels PL, Kruger H, Runnegar MTC, Santikarn S, et al. (1985) Structural studies on cyanoginosins-LR, -YR, -YA, and –YM, peptide toxins from Microcystis aeruginosa. J Chem Soc, Perkin Transactions I:2747–2748

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem 72:243–254

    Google Scholar 

  • Briand E, Bormans M, Quiblier C, Salençon MJ, Humbert JF (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS One 7(1):e29981

    Article  CAS  Google Scholar 

  • Campos A, Araújo P, Pinheiro C, Azevedo J, Osório H, Vasconcelos V (2013) Effect on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Ecotoxicol Environ Saf 94:45–53

    Article  CAS  Google Scholar 

  • Carmichael WW, Biggs DF, Gorham PR (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187:542–544

    Article  CAS  Google Scholar 

  • Chia AM, Cordeiro-Araújo MK, Bittencourt-Oliveira MC (2015a) Growth and antioxidant response of Microcystis aeruginosa (cyanobacteria) exposed to anatoxin-a. Harmful Algae 49:135–146

    Article  CAS  Google Scholar 

  • Chia AM, Chimdirim PK, Japhet WS (2015b) Lead induced antioxidant response and phenotypic plasticity of Scenedesmus quadricauda (Turp.) de Brebisson under different nitrogen conditions. J Appl Phycol 27:293–302

    Article  CAS  Google Scholar 

  • Chia AM, Lombardi AT, Melão MGG, Parrish CC (2015c) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95

    Article  CAS  Google Scholar 

  • Deng L, Senseman SA, Gentry TJ, Zuberer DA, Weiss TL, Devarenne TP, Camargo ER (2012) Effect of selected herbicides on growth and hydrocarbon content of Botryococcus braunii (race B). Ind Crop Prod 39:154–161

    Article  CAS  Google Scholar 

  • Furey A, Crowley J, Hamilton B, Lehane M, James KJ (2005) Strategies to avoid the mis-identification of anatoxin-a using mass spectrometry in the forensic investigation of acute neurotoxic poisoning. J Chromatogr A 1082:91–97

    Article  CAS  Google Scholar 

  • Ger KA, Teh SJ, Baxa DV, Lesmeister S, Goldman CR (2010) The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Franscisco estuary. Freshw Biol 55:1548–1559

    Article  Google Scholar 

  • Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010) Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ Sci Technol 44:7361–7368

    Article  CAS  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • Ha MH, Pflugmacher S (2013a) Phytotoxic effects of the cyanobacterial neurotoxin anatoxin-a: morphological, physiological and biochemical responses in aquatic macrophyte, Ceratophyllum demersum. Toxicon 70:1–8

    Article  CAS  Google Scholar 

  • Ha MH, Pflugmacher S (2013b) Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a. Aquat Toxicol 138-139:26–34

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Harel M, Weiss G, Lieman-Hurwitz J, Gun J, Lev O, Lebendiker M, et al. (2013) Interactions between Scenedesmus and Microcystis may be used to clarify the role of secondary metabolites. Environ Microbiol Rep 5:97–104

    Article  CAS  Google Scholar 

  • Hereman TC, Bittencourt-Oliveira MC (2012) Bioaccumulation of microcystins in lettuce. Journal of Phycology J Phycol 48:1535–1537

    Article  CAS  Google Scholar 

  • Holland A, Kinnear S (2013) Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Mar Drugs 11:2239–2258

    Article  Google Scholar 

  • Huang YL, Zhang P, Zhu C, Zhou ZH (2012) Vertical migration comparison of Scenedesmus and Microcystis. Adv Mat Res 518-523:558–564

    Article  Google Scholar 

  • James KJ, Sherlock IR, Stack MA (1997) Anatoxin-a in Irish fresh-water and cyanobacteria, determined using a new fluorimetric liquid chromatographic method. Toxicon 35:963–971

    Article  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1982) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  CAS  Google Scholar 

  • Johansson LH, Borg LAH (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174:331–336

    Article  CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  Google Scholar 

  • Juttner F, Leonhardt J, Mohren S (1983) Environmental factors affecting the formation of mesityloxide dimethylallylic alcohol and other volatile compounds excreted by Anabaena cylindrical. J Gen Microbiol 129:407–412

    Google Scholar 

  • Kearns KD, Hunter MD (2000) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2:291–297

    Article  CAS  Google Scholar 

  • Kearns KD, Hunter MD (2001) Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microbial Ecol 42:80–86

    CAS  Google Scholar 

  • Krienitz L, Hegewald E, Hepperle D, Wolf M (2003) The systematics of coccoid green algae: 18S rRNA gene sequence data versus morphology. Biologia 58:437–446

    CAS  Google Scholar 

  • Larkum AWD, Douglas SE, Raven JA (2003) Photosynthesis in algae. Kluwer, Dordrecht Netherlands, p. 479

    Book  Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214

    Article  CAS  Google Scholar 

  • Liu Y, Xu Y, Yu YP, Yu R, Li P, Qiao D, Cao Y, Cao Y (2014) The biodiversity of oleaginous microalgae in northern Qinghai-Tibet plateau. Afr J Microbiol Res 8:66–74

    Article  CAS  Google Scholar 

  • Lozano P, Trombini C, Crespo E, Blasco J, Moreno-Garrido I (2014) ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicol Environ Saf 104:294–301

    Article  CAS  Google Scholar 

  • Méjean A, Ploux O (2013) A genomic view of secondary metabolite production in cyanobacteria. Genomics of cyanobacteria. Adv Bot Res 65:189–234

    Article  Google Scholar 

  • Metcalf JS, Bell SG, Codd GA (2000) Production of novel polyclonal antibodies against the cyanobacterial toxin microcystin-LR and their application for the detection and quantification of microcystins and nodularin. Water Res 34:2761–2769

    Article  CAS  Google Scholar 

  • Mikula P, Zezulka S, Jancula D, Marsalek B (2012) Metabolic activity and membrane integrity changes in Microcystis aeruginosa—new findings on hydrogen peroxide toxicity in cyanobacteria. Eur J Phycol 47:195–206

    Article  CAS  Google Scholar 

  • Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The generation of superoxide radical antioxidation of haemoglobin. J Biol Chem 247:6960–6962

    CAS  Google Scholar 

  • Mitrovic SM, Pflugmacher S, James KJ, Furey A (2004) Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquat Toxicol 68:185–192

    Article  CAS  Google Scholar 

  • Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the fresh water fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18:137–141

    Article  CAS  Google Scholar 

  • Molisch H (1937) Der Einfluss einer Pflanze auf die andere—Allelopathie. Fischer, Jena

    Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microb 63:3327–3332

    Google Scholar 

  • Paerl H (2008) Nutrient and other environment controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Cyanobacterial harmful algal blooms. Adv Exp Med Biol 619:217–237

    Article  CAS  Google Scholar 

  • Pawlik-Skowronska B, Skowronski T, Pirszel J, Adamczyk A (2004) Relationship between cyanobacterial bloom composition and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (Se Poland). Pol J Ecol 52:479–490

    CAS  Google Scholar 

  • Qiao W, Li C, Fan LM (2014) Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ Exp Bot 100:84–93

    Article  CAS  Google Scholar 

  • Rasoul-Amini S, Ghasemi Y, Morowvat MH, Mohagheghzadeh A (2009) PCR amplification of 18S rRNA, single cell protein production and fatty acid evaluation of some naturally isolated microalgae. Food Chem 16:129–136

    Article  Google Scholar 

  • Reddy JK, Suga T, Mannaerts GP, Lazarow PB, Subramani S (1995) Peroxisomes: biology and role in toxicology and disease. Ann N Y Acad Sci, New York, pp. 1–795

    Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosyn Res 89:27–41

    Article  CAS  Google Scholar 

  • Rzymski P, Poniedzialek B, Kokocinski M, Jurczk T, Lipski D, Wiktorowicz K (2014) Interspecific allelopathy in cyanobacteria: cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35:1–8

    Article  CAS  Google Scholar 

  • Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical markers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15

    Article  CAS  Google Scholar 

  • Van de Waal DB, Verspagen JMH, Lurling M, Van Donk E, Visser PM, et al. (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Letters 12:1326–1335

    Article  Google Scholar 

  • Willame R, Boutte C, Grubisic S, Willmotte A, Komárek J, Hoffmann L (2006) Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxemburg. J Phycol 42:1312–1332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.A. Chia and A.S. Lorenzi were supported by post-doctoral fellowships (FAPESP—2013/11306-3; 2013/15296-2; 2014/26898-6) and M. C Bittencourt-Oliveira by a research grant (FAPESP—2014/01934-0) from the Sao Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Carmo Bittencourt-Oliveira.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chia, M.A., Cordeiro-Araújo, M.K., Lorenzi, A.S. et al. Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions?. Environ Sci Pollut Res 23, 23092–23102 (2016). https://doi.org/10.1007/s11356-016-7538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7538-8

Keywords

Navigation