Skip to main content

Advertisement

Log in

The application of regenerable sorbents for mercury capture in gas phase

  • Global pollution problems, Trends in Detection and Protection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mercury is a well-known toxic element, and flue gas streams emitted from coal-fired utilities are one of the largest anthropogenic sources of this element. This study briefly reviews the proposed technologies for reducing mercury emissions from coal combustion, focusing on an emerging process which involves the use of regenerable sorbents and especially those loaded with noble metals. Among the mercury species formed during coal combustion, elemental mercury is the most difficult to remove from the flue gases due to its low reactivity and insolubility in water. The widespread interest in using regenerable sorbents with metals is due to their ability to retain elemental mercury. With this technology, not only can efficiencies of 100 % be reached in the retention of elemental mercury but also a way to avoid the generation of new wastes loaded with mercury. This study considers the main aspects that must be taken into account when developing effective regenerable sorbents for mercury capture, with special attention to sorbents containing noble metals. The characteristics of this process are compared with those of other processes in a more advanced state of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abad-Valle P, Lopez-Anton MA, Diaz-Somoano M, Martinez-Tarazona MR (2011) The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury. Chem Eng J 174:86–92

    Article  CAS  Google Scholar 

  • Ballestero D, Gómez-Giménez C, García-Díez E, Juan R, Rubio B, Izquierdo MT (2013) Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents. J Hazard Mater 260:247–254

    Article  CAS  Google Scholar 

  • Baltrus JP, Granite EJ, Pennline HW, Stanko DC (2008) Surface characterization of Pd/Al2O3 sorbents for mercury adsorption from fuel gas. Main group. Chemistry 7:217–225

    CAS  Google Scholar 

  • Baltrus JP, Granite EJ, Pennline HW, Stanko DC, Hamilton H, Poulston S, Rowsell L, Smith A, Chu W (2010) Surface characterization of palladium-alumina sorbents for high temperature capture of mercury and arsenic from fuel gas. Fuel 89:1323–1325

    Article  CAS  Google Scholar 

  • Baltrus JP, Granite EJ, Rupp EC, Stanko DC, Howard B, Pennline HW (2011) Effect of dispersion on the capture of toxic elements from fuel gas by palladium-alumina sorbents. Fuel 90:1992–1998

    Article  CAS  Google Scholar 

  • Battistoni C, Bemporad E, Galdikas A, Kaciulis S, Mattogno G, Mickevicius S, Olevano V (1996) Interaction of mercury vapor with thin films of gold. Appl Surf Sci 103:107–111

    Article  CAS  Google Scholar 

  • Berry M (2007) Mercury control evaluation of calcium bromide injection into a PRB- fired furnace with an SCR. Proceedings of the Air Quality VI Conference, Arlington, VA, September 24–27

  • Bland AE, Greenwell C, Newcomer J, Sellakumar KM, Carney BA (2008) A novel pathway for mercury removal by thermal treatment of coal. 33rd International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, June 1–5

  • Butz JR, Turchi C, Broderick TE, Albiston J (2000) Options for mercury removal from coal-fired flue gas streams: pilot-scale research on activated carbon, alternative and regenerable sorbents. 17th Int. Pittsburgh Coal Conference

  • Council of the European Union (2011) Council conclusions: review of the community strategy concerning mercury, 3075th environment council meeting, Brussels, March 14 http://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata /en/envir/119867.pdf

  • Díaz-Somoano M, López-Antón MA, Martínez-Tarazona MR (2004) Retention of arsenic and selenium during hot gas desulphurisation using metal oxide sorbents. Energ Fuel 18:1238–1242

    Article  Google Scholar 

  • Dong J, Xu Z, Kuznicki SM (2009) Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. Environ Sci Technol 43:3266–3271

    Article  CAS  Google Scholar 

  • Feeley T, O’Palko B, Jones A (2008) Developing mercury control technology for coal-fired power plants-from concept to commercial reality. Main Group Chem 7:169–179

    Article  CAS  Google Scholar 

  • Fernández-Miranda N, López-Antón MA, Díaz-Somoano M, Martinez-Tarazona MR (2016) Mercury oxidation in catalysts used for selective reduction of NOx (SCR) in oxy-fuel combustion. Chem Eng J 285:77–82

    Article  Google Scholar 

  • García AB, Vega JMG, Martínez-Tarazona MR, Spears DA (1994) The removal of trace elements from Spanish high rank coals by a selective agglomeration process. Fuel 73:1189–1196

    Article  Google Scholar 

  • Gómez-Giménez C, Ballestero D, Juan R, Rubio B, Izquierdo MT (2015) Mercury capture by a regenerable sorbent under oxycoal combustion conditions: effect of SO2 and O2 on capture efficiency. Chem Eng Sci 122:232–239

    Article  Google Scholar 

  • Granite EJ, Pennline HW (2006b) Method for high temperature mercury capture from gas streams. U.S. Patent 7,033,419

  • Granite EJ, Pennline HW, Hargis RA (1998) Sorbents for mercury removal from flue gas. DOE/FETC/TR-98-01 http://www.osti.gov/scitech/servlets/purl/1165/

  • Granite EJ, Pennline HW, Hargis RA (2000) Novel sorbents for mercury removal from flue gas. Ind Eng Chem Res 39:1020–1029

    Article  CAS  Google Scholar 

  • Granite EJ, Myers CR, King WP, Stanko D, Pennline HW (2006a) Sorbents for mercury capture from fuel gas with application to gasification systems. Ind Eng Chem Res 45:4844–4848

    Article  CAS  Google Scholar 

  • Izquierdo MT, Ballestero D, Juan R, García-Díez E, Rubio B, Ruiz C, Pino MR (2011) Tail-end Hg capture on Au/carbon-monolith regenerable sorbents. J Hazard Mater 193:304–310

    Article  CAS  Google Scholar 

  • Jarvis A, Maag J (2014) Study on EU implementation of the Minamata convention on mercury. Bipro, Garrigues. June 30

  • Jarvis A, Maag J (2015) Study on EU implementation of the Minamata convention on mercury. Bipro, Garrigues, Final report. March 30

  • Jones A, Hoffmann J, Smith D, Feeley T, Murphy J (2007) DOE/NETL’s phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection. Environ Sci Technol 41:1365–1371

    Article  CAS  Google Scholar 

  • Khannaa PK, Gokhalea R, Subbaraoa VVVS, Kasi-Vishwanatha A, Dasa BK, Satyanarayanab CVV (2005) PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent. Mater Chem Phys 92:229–233

    Article  Google Scholar 

  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  • Kobiela T, Nowakowski B, Dus R (2003) The influence of gas phase composition on the process of Au-Hg amalgam formation. Appl Surf Sci 206:78–89

    Article  CAS  Google Scholar 

  • Levlin M, Ikavalko E, Laitinen T (1999) Adsorption of mercury on gold and silver surfaces. Fresenius J Anal Chem 365:577–586

    Article  CAS  Google Scholar 

  • Liu Y, Kelly DJA, Yang H, Lin CCH, Kuznicki SM, Xu Z (2008) Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant. Environ Sci Technol 42:6205–6210

    Article  CAS  Google Scholar 

  • Liu Y, Bisson TM, Yang H, Xu Z (2010) Recent developments in novel sorbents for flue gas clean up. Fuel Process Technol 91:1175–1197

    Article  CAS  Google Scholar 

  • Long SJ, Scott DR, Thompson RJ (1973) Atomic absorption determination of elemental mercury collected from ambient air on silver wool. Anal Chem 45:2227–2233

    Article  CAS  Google Scholar 

  • López-Antón MA, Díaz-Somoano M, García AB, Martínez-Tarazona MR (2006) Evaluation of mercury associations in two coals of different rank using physical separation procedures. Fuel 85:1389–1395

    Article  Google Scholar 

  • Luo G, Yao H, Xu M, Cui X, Chen W, Gupta R, Xu Z (2010) Carbon nanotube-silver composite for mercury capture and analysis. Energ Fuel 24:419–426

    Article  CAS  Google Scholar 

  • Martínez-Tarazona MR, García AB (1991) Trace elements removal during coal cleaning by froth flotation. In: Elemental analysis of coal and by-products. World Scientific 295–298

  • Morency JR, Panagiotou T, Senior CL (2000) Laboratory duct injection of a zeolite-based mercury sorbent. Proceedings of the 93rd Air & Waste Management Association Annual Conference and Exhibition, Salt Lake City, Utah, June 18–22

  • Munson C, Indrakanti P, Ramezan M, Granite EJ, Tennant J (2014) Evaluation of palladium-based sorbents for trace mercury removal in electricity generation. Int. J. Clean Coal Energy 3:65–76

    Article  Google Scholar 

  • National Energy Technology Laboratory (NETL) (2006) Mercury emissions control technologies: evaluation of MerCAP for power plant mercury control. http://www.netl.doe.gov/technologies/coalpower/ewr/mercury/controltech/mercap.htm

  • Nowakowski R, Kobiela T, Wolfram Z, Duces R (1997) Atomic force microscopy of Au/Hg alloy formation on thin Au films. Appl Surf Sci 115:217–231

    Article  CAS  Google Scholar 

  • O’Dowd WJ, Hargis RA, Granite EJ, Pennline HW (2004) Recent advances in mercury removal technology at the National Energy Technology Laboratory. Fuel Process Technol 85:533–548

    Article  Google Scholar 

  • Ochoa-González R, Córdoba P, Díaz-Somoano M, Font O, López-Antón MA, Leiva C, Martínez-Tarazona MR, Querol X, Pereira CF, Tomás A, Gómez P, Mesado P (2011) Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants. Chemosphere 85(4):565–570

    Article  Google Scholar 

  • Önal Y, Schimpf S, Claus P (2004) Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts. J Catal 223:122–133

    Article  Google Scholar 

  • Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, et al. (2010a) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44:2487–2499

    Article  CAS  Google Scholar 

  • Pacyna JM, Sundseth K, Pacyna EG, Jozewicz W, Munthe J, Belhaj M, et al. (2010b) An assessment of costs and benefits associated with mercury emission reductions from major anthropogenic sources. J Air Waste Manage Assoc 60:302–315

    Article  CAS  Google Scholar 

  • Panagiotou T, Morency JR, Senior CL (2000) Zeolite-based mercury sorbent-laboratory testing and modeling. Prepr DiV Fuel Chem. Am Chem Soc 45:426–430

    CAS  Google Scholar 

  • Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, Benson SA (2003) Status review of mercury control options for coal-fired power plants. Fuel Process Technol 82:89–165

    Article  CAS  Google Scholar 

  • Pavlish JH, Hamre LL, Zhuang Y (2010) Mercury control technologies for coal combustion and gasification systems. Fuel 89:838–847

    Article  CAS  Google Scholar 

  • Pflughoeft-Hassett DF, Hassett DJ, Buckley TD, Heebink LV, Pavlish JH (2009) Activated carbon for mercury control: implications for fly ash management. Fuel Process Technol 90:1430–1434

    Article  CAS  Google Scholar 

  • Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

    Article  CAS  Google Scholar 

  • Portzer JW, Albritton JR, Allen CC, Gupta RP (2004) Development of novel sorbents for mercury control at elevated temperatures in coal-derived syngas: results of initial screening of candidate materials. Fuel Process Technol 85:621–630

    Article  CAS  Google Scholar 

  • Poulston S, Granite EJ, Pennline HW, Myers CR, Stanko DP, Hamilton H, Rowsell L, Smith AWJ, Ilkenhans T, Chu W (2007) Metal sorbents for high temperature mercury capture from flue gas. Fuel 86:2201–2203

    Article  CAS  Google Scholar 

  • Poulston S, Granite EJ, Pennline HW, Hamilton H, Smith AWJ (2011) Palladium based sorbents for high temperature arsine removal from fuel gas. Fuel 90:3118–3121

    Article  CAS  Google Scholar 

  • Rallo M, López-Antón M, Contreras ML, Maroto-Valer MM (2012) Mercury policy and regulations for coal-fired power plants. Environ Sci Pollut R 19:1084–1096

    Article  CAS  Google Scholar 

  • Rodríguez-Pérez J, López-Antón MA, Díaz-Somoano M, García R, Martínez-Tarazona MR (2011) Development of gold nanoparticle-doped activated carbon sorbent for elemental mercury. Energ Fuel 25:2022–2027

    Article  Google Scholar 

  • Rodríguez-Pérez J, López-Antón MA, Díaz-Somoano M, García R, Martínez-Tarazona MR (2013) Regenerable sorbents for mercury capture in simulated coal combustion flue gas. J Hazard Mater 260:869–877

    Article  Google Scholar 

  • Rupp EC, Granite EJ, Stanko DC (2013) Laboratory scale studies of Pd-Al2O3 sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures. Fuel 108:131–136

    Article  CAS  Google Scholar 

  • Scala F, Anacleria C, Cimino S (2013) Characterization of a regenerable sorbent for high temperature elemental mercury capture from flue gas. Fuel 108:13–18

    Article  CAS  Google Scholar 

  • Schaedlich FH, Schneeberger DR (1997) Cartridge for collection of a sample by adsorption onto a solid surface. US Patent 566079

  • Seung-Whee R (2016) Control of mercury emissions: policies, technologies and future trends. J Energ Emis Control Technol 4:1–15

    Google Scholar 

  • Sjostrom S, Dillon M, Donnelly B, Bustard J, Filippelli G, Glesmann R, Orscheln T, Wahlert S, Chang R, O’Palko A (2009) Influence of SO3 on mercury removal with activated carbon: full-scale results. Fuel Process Technol 90:1419–1423

    Article  CAS  Google Scholar 

  • Sjostrom S, Durham M, Bustard CJ, Martin C (2010) Activated carbon injection for mercury control: overview. Fuel 89:1320–1322

    Article  CAS  Google Scholar 

  • Sundseth K, Pacyna JM, Pacyna EG, Munthe J, Belhaj M, Astrom S (2010) Economic benefits from decreased mercury emissions: projections for 2020. J Cleaner Production 18:386–394

    Article  CAS  Google Scholar 

  • Tanyakorn M, Noriaki S, Shin-Ichi Y, Nawin Viriya VE, Tawatchai C (2010) Facile strategy for stability control of gold nanoparticles synthesized by aqueous reduction method. Curr Appl Phys 10:708–714

    Article  Google Scholar 

  • Toole-O’Neil B, Tewalt SJ, Finkelman RB, Akers DJ (1999) Mercury concentration in coal unraveling the puzzle. Fuel 78:47–54

    Article  Google Scholar 

  • Uffalussy K, Miller J, Howard B, Stanko D, Granite EJ (2014) Arsenic adsorption on palladium-copper alloy films. Ind Eng Chem Res 53:7821–7827

    Article  CAS  Google Scholar 

  • UNEP (2013) Global Mercury Assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland

  • United States Environmental Protection Agency (EPA) (2011) National emission standards for hazardous air pollutants from coal- and oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units. http://www.epa.gov/airquality/powerplanttoxics/pdfs /proposal.pdf

  • Vosteen B, Beyer J, Bonkhofer T, Kanefke R, Nolte M et al. (2005) Process for removing mercury from flue gases. Patent application EP1386655 (A1) or patent DE 10233173 or US Patent # 6,878,358 B2

  • Vosteen BW, Winkler H, Berry MS (2010) Native halogens in coals from USA, China and elsewhere: low chlorine coals need bromide addition for enhanced mercury capture. Air and Waste Management Association 8th Power Plant Air Pollutant Control Mega Symposium 2:1174–1242

    Google Scholar 

  • World Health Organization (WHO) (2016) http://www.who.int/mediacentre/factsheets/fs361/en/

  • Yan TY (1994) A novel process for Hg removal from gases. Ind Eng Chem Res 33:3010–3014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this work was provided by the projects CTQ2014-58110-R and GRUPIN14-031. The authors thank PCTI Asturias for awarding N. Fernández Miranda a pre-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Antonia Lopez-Anton.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Anton, M.A., Fernández-Miranda, N. & Martínez-Tarazona, M.R. The application of regenerable sorbents for mercury capture in gas phase. Environ Sci Pollut Res 23, 24495–24503 (2016). https://doi.org/10.1007/s11356-016-7534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7534-z

Keywords

Navigation