Skip to main content
Log in

Response of sediment calcium and magnesium species to the regional acid deposition in eutrophic Taihu Lake, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acid deposition causes carbonate dissolution in watersheds and leads to profound impacts on water chemistry of lakes. Here, we presented a detailed study on the seasonal, spatial, and vertical variations of calcium and magnesium species in the overlying water, interstitial water, and sediment profiles in eutrophic Taihu Lake under the circumstance of regional acid deposition. The result showed that both the acid deposition and biomineralization in Taihu Lake had effects on Ca and Mg species. In the lake water, calcium carbonate was saturated or over-saturated based on long-term statistical calculation of the saturation index (SI). On the sediment profiles, significant difference in Ca and Mg species existed between the surface sediment (0–10 cm) and deeper sediments (>10 cm). The interstitial water Ca2+ and Mg2+, ion-exchangeable Ca and Mg in the surface sediment were higher than those in the deeper sediment. In the spring, when the acid deposition is more intensive, the acid-extracted Ca and Mg in the surface sediment were lower than that in the deeper sediment in the northwest lake, due to carbonate dissolution caused by the regional acid deposition. Spatially, the higher concentration of acid-extracted Ca and Mg in the northwest surface sediment than that in the east lake was observed, indicating the pronounced carbonate biomineralization by algae bloom in the northwest lake. Statistical analysis showed that acid deposition exerted a stronger impact on the variation of acid-extracted Ca and Mg in the surface sediment than the biomineralization in Taihu Lake. For the total Ca and Mg concentration in the spring, however, no significant change between the surface and deeper sediment in the northwest lake was observed, indicating that the carbonate precipitation via biomineralization and the carbonate dissolution due to acidic deposition were in a dynamic balance. These features are of major importance for the understanding of combined effects of acid deposition and eutrophication on freshwater lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atkinson CA, Jolley DF, Simpson SL (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69:1428–1437

    Article  CAS  Google Scholar 

  • Baker LA, Herlihy AT, Kaufmann PR, Eilers JM (1991) Acidic lakes and streams in the United States: the role of acidic deposition. Science 252:1151–1154

    Article  CAS  Google Scholar 

  • Benzerara K et al. (2014) Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. PNAS 111:10933–10938

    Article  CAS  Google Scholar 

  • Black JR, Epstein E, Rains WD, Q-z Y, Casey WH (2008) Magnesium-isotope fractionation during plant growth. Environ Sci Techno 42:7831–7836

    Article  CAS  Google Scholar 

  • Byrne M, Smith AM, West S, Collard M, Dubois P, Graba-landry A, Dworjanyn SA (2014) Warming influences Mg2+ content, while warming and acidification influence aalcification and test strength of a sea urchin. Environ. Sci. Technol 48:12620–12627

    Article  CAS  Google Scholar 

  • Chen JS (2006) Theory of river water quality and water quality of Chinese rivers. Science Press, Beijing, China

    Google Scholar 

  • Chen JS, Wang FY, Xia XH, Zhang LT (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187:231–255

    Article  CAS  Google Scholar 

  • Chetelat B, Liu CQ, Zhao ZQ, Wang QL, Li SL, Li J, Wang BL (2008) Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering. Geochim Cosmochim Acta 72:4254–4277

    Article  CAS  Google Scholar 

  • Cui J, Zhou J, Peng Y, He Y, Yang H, Mao J (2014) Atmospheric wet deposition of nitrogen and sulfur to a typical red soil agroecosystem in Southeast China during the ten-year monsoon seasons (2003–2012). Atmos Environ 82:121–129

    Article  CAS  Google Scholar 

  • Dittrich M, Kurz P, Wehrli B (2004) The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiol J 21:45–53

    Article  CAS  Google Scholar 

  • Driscoll CT et al. (1998) The response of lake water in the Adirondack region of New York to changes in acidic deposition. Environ SciPolicy 1:185–198

    CAS  Google Scholar 

  • Duan H et al. (2009) Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol 43:3522–3528

    Article  CAS  Google Scholar 

  • Duan L, Ma X, Larssen T, Mulder J, Hao J (2011) Response of surface water acidification in upper Yangtze River to SO2 emissions abatement in China. Environ. Sci. Technol 45:3275–3281

    Article  CAS  Google Scholar 

  • Gao Y, Zhu G, Qin B, Pang Y, Gong Z, Zhang Y (2009) Effect of ecological engineering on the nutrient content of surface sediments in Lake Taihu, China. Ecol Eng 35:1624–1630

    Article  Google Scholar 

  • Goss LM (2003) A demonstration of acid rain and lake acidification: wet deposition of sulfur dioxide. J Chem Educ 80:39

    Article  CAS  Google Scholar 

  • Guo J, Wang F, Vogt RD, Zhang Y, Liu C (2015) Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin Sci Rep:5

  • Guo L (2007) Doing battle with the green monster of Taihu Lake. Science 317:1166

    Article  CAS  Google Scholar 

  • Han C, Geng J, Ren H, Gao S, Xie X, Wang X (2013) Phosphite in sedimentary interstitial water of Lake Taihu, a large eutrophic shallow lake in China. Environ. Sci. Technol 47:5679–5685

    Article  CAS  Google Scholar 

  • Han G, Liu C (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol 204:1–21

    Article  CAS  Google Scholar 

  • Heard AM, Sickman JO, Rose NL, Bennett DM, Lucero DM, Melack JM, Curtis JH (2014) 20th century atmospheric deposition and acidification trends in lakes of the Sierra Nevada, California. USA Environ Sci Technol 48:10054–10061

    Article  CAS  Google Scholar 

  • Hu MH, Stallard RF, Edmond JM (1982) Major ion chemistry of some large Chinese rivers. Nature 298:550–553

    Article  Google Scholar 

  • Jin X, Wang S, Pang Y, Wu FC (2006) Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake. China. Environ Pollut 139:288–295

  • Kaiserli A, Voutsa D, Samara C (2002) Phosphorus fractionation in lake sediments—lakes Volvi and Koronia. N Greece Chemosphere 46:1147–1155

    Article  CAS  Google Scholar 

  • Kelts K, Hsü KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes. Springer, New York, pp. 295–323

    Chapter  Google Scholar 

  • Lahnsteiner F (2014) The effect of K+, Ca2+, and Mg2+ on sperm motility in the perch, Perca fluviatilis fish. Physiology and Biochemistry 40:469–480

    CAS  Google Scholar 

  • Larssen T et al. (2006) Acid rain in China. Environ. Sci. Technol 40:418–425

    Article  CAS  Google Scholar 

  • Lee S, Schnoor JL (1988) Reactions that modify chemistry in lakes of the National Surface Water Survey. Environ. Sci. Technol 22:190–195

    Article  CAS  Google Scholar 

  • Liu Y, Ma L, Li Y, Zheng L (2007) Evolution of heavy metal speciation during the aerobic composting process of sewage sludge. Chemosphere 67:1025–1032

    Article  CAS  Google Scholar 

  • Luo L, Qin B, Song Y, Yang L (2007) Seasonal and regional variations in precipitation chemistry in the Lake Taihu Basin. China Atmos Environ 41:2674–2679

    Article  CAS  Google Scholar 

  • Marce R, Obrador B, Morgui J-A, Lluis Riera J, Lopez P, Armengol J (2015) Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geosci 8:107–111

    Article  CAS  Google Scholar 

  • McCutcheon J, Power IM, Harrison AL, Dipple GM, Southam G (2014) A greenhouse-scale photosynthetic aicrobial bioreactor for carbon sequestration in magnesium carbonate minerals. Environ. Sci. Technol 48:9142–9151

    Article  CAS  Google Scholar 

  • Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381

    Article  CAS  Google Scholar 

  • Neary BP, Dillon PJ (1988) Effects of sulphur deposition on lake-water chemistry in Ontario, Canada. Nature 333:340–343

    Article  CAS  Google Scholar 

  • Ni Z, Li Y, Wang S, Jin X, Chu Z (2011) The sources of organic carbon and nitrogen in sediment of Taihu Lake. Acta Ecol Sin 31:4661–4670 in Chinese

    CAS  Google Scholar 

  • Peng J, Song Y, Yuan P, Cui X, Qiu G (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  Google Scholar 

  • Qin B, Xu P, Wu Q, Luo L, Zhang Y (2007a) Environmental issues of Lake Taihu, China. Hydrobiologia 581:3–14

    Article  CAS  Google Scholar 

  • Qin B, Liu Z, Havens K (2007b) Eutrophication of shallow lakes with special reference to Lake Taihu, China, vol 194 Springer Science & Business Media

    Book  Google Scholar 

  • Ries JB (2004) Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: a record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology 32:981–984

    Article  CAS  Google Scholar 

  • Shang H, Kim YK, Xu D, Innes JL, Haron AH (2000) In: Innes JL, Haron AH (eds) Forestry problems and air pollution in China and Korea. CABI: Wallingford, UK, pp. 121–142

    Google Scholar 

  • Song Y, Qin B, Yang L, Hu W, Luo L (2005) The chemical characteristics of wet deposition and preliminary analysis of surface water acidification along the coastal area of Taihu Lake. J Nanjing Institute Meteo 28:593–600

    Google Scholar 

  • Stabel H (1986) Calcite precipitation in Lake Constance: chemical equilibrium sedimentation, and nucleation by algae. Limnol Oceanogr 31:1081–1093

    Article  CAS  Google Scholar 

  • Stoddard JL et al. (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995–998

    Article  CAS  Google Scholar 

  • WHO (2008) Guidelines for drinking water quality (Third Edition). WHO Press, Geneva, Switzerland

  • Wright RF (1988) Acidification of lakes in the eastern United States and southern Norway: a comparison. Environ. Sci. Technol 22:178–182

    Article  CAS  Google Scholar 

  • Xie S, Wang R, Zheng H (2012) Analysis on the acid rain from 2005 to 2011 in China. Environ Monit Forewarming 4:33–37 in Chinese

    Google Scholar 

  • Yang L, Qin B, Wu R (2001) Preliminary study for potential impacts on the aquatic environment of Lake Taihu by acid rain. J Lake Sci 13:135–142 in Chinese

    Article  Google Scholar 

  • Ye H, Yuan X, Ge M, Li J, Sun H (2010) Water chemistry characteristics and controlling factors in the northern rivers in the Taihu Basin. Ecol Environ Sci 19:23–27 in Chinese

    Google Scholar 

  • Yu T, Zhang Y, Hu X, Meng W (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake. China Ecotox Environ Safe 81:55–64

    Article  Google Scholar 

  • Yu T, Zhang Y, Wu FC, Meng W (2013) Six-decade change in water chemistry of large freshwater Lake Taihu. China Environ Sci Technol 47:9093–9101

    Article  Google Scholar 

  • Yuan H, An S, Shen J, Liu E (2013) The characteristic and environmental pollution records of phosphorus species in different trophic regions of Taihu Lake. China Environ Earth Sci 71:783–792

    Article  Google Scholar 

  • Yuan H, Shen J, Liu E, Wang J, Meng X (2010) Space distribution characteristics and diversity analysis of phosphorus from overlying water and surface sediments in Taihu Lake. Eniron Sci 31:954–960 in Chinese

    Google Scholar 

  • Zhang X, Chai F, Wang S, Sun X, Han M (2010) Research progress of acid precipitation in China. Res Environ Sci 23:527–532 in Chinese

    CAS  Google Scholar 

  • Zhang Y, Qin B, Ma R, Zhu G, Zhang L, Chen W (2005) Chromophoric dissolved organic matter absorption characteristics with relation to fluorescence in typical macrophyte, algae lake zones of Lake Taihu. Environ Sci 26:142–147 in Chinese

    Google Scholar 

  • Zhao Y, Duan L, Xing J, Larssen T, Nielsen CP, Hao J (2009) Soil acidification in China: is controlling SO2 emissions enough? Environ Sci Technol 43:8021–8026

    Article  CAS  Google Scholar 

  • Zhu J, Hu W, Hu C (2010) Distribution of deposition rate of Lake Taihu and its health assessment. Resources and Environment in the Yangtze Basin 19:703–706 in Chinese

    Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (No. 41473110, 51278475) and the National Major Science and Technology Project of Water Pollution Control and Treatment of China (No. 2012ZX07506-008) financially supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Qiujin.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Dan, D., Chengda, H. et al. Response of sediment calcium and magnesium species to the regional acid deposition in eutrophic Taihu Lake, China. Environ Sci Pollut Res 23, 22489–22499 (2016). https://doi.org/10.1007/s11356-016-7365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7365-y

Keywords

Navigation