Skip to main content

Freshwater Carbonate Sedimentation

  • Chapter
Lakes

Abstract

Carbonate minerals are a common constituent of lacustrine sediments. The great variability with respect to geological setting, climatic environment, water chemistry, and biological activity limits generalizations about mechanisms of carbonate sedimentation. On the whole, in constrast to an oceanic environment, the bulk of primary lacustrine carbonates are inorganic chemical precipitates. Two distinctly different geological settings can be recognized: (1) carbonate and evaporite deposition in brine lakes or on playas in arid regions (see Chap. 8, this volume), and (2) carbonate sedimentation in fresh- and brackish-water lakes in humid regions. Occurrences of lacustrine chalks and marls in young geological formations of temperate regions have been described since the time of Lyell (1830). In northern America and Europe, Late Quaternary chalks were found near still existing lakes and their genesis was related to a postglacial period of climatic amelioration (e.g., Heim, 1919). Typically, these deposits are fine grained, either rhythmically laminated or massive, white to dull-yellowish gray chalks to marls. This distinction is qualitative based on a bulk carbonate content boundary around 60%. The dominant mineral is calcite. Similar varve-like carbonate or marl sediments were found in older lacustrine deposits (e.g., Bradley, 1929). Nipkow (1920) described recent analogies to laminated lacustrine carbonates in Lake Zurich; the light laminae are rich in CaCO3. Forel (1901) early recognized a biological role, but Minder (1922, 1926) developed the concept of inorganic, biogenically induced calcite precipitation. Meanwhile lacustrine marls in regions of Quaternary glaciation around the Great Lakes in North America were studied (e.g., Davis, 1901; Pollock, 1918). Calcite precipitation in those biologically active hardwater lakes (e.g., Halbfass, 1923; Ruttner, 1962; Pia, 1933; Ohle, 1952; Hutchinson, 1957; Wetzel, 1975) was soon related to extraction of Co2 during photosynthesis by algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-el-Malek, Y, and S. G. Rizk. (1963). Bacterial sulfate reduction and the development of alkalinity. J. Appl. Bacteriol., 26: 7–26.

    CAS  Google Scholar 

  • Anderson, R. Y., and D. W. Kirkland. (1960). Origin, varves and cycles of Jurassic Todilto Formation, New Mexico. Am. Assoc. Petrol. Geol. Bull., 44: 37–52.

    Google Scholar 

  • Anderson, R. Y. and D. W. Kirland. (1969). Paleoecology of an Early Pleistocene Lake on The High Plains of Texas. Geol. Soc. Am. Memoir, 113, 211 p.

    Google Scholar 

  • Ball, M. M. (1967). Carbonate sand bodies of Florida and the Bahamas. J. Sed. Petrol., 37: 556–591.

    CAS  Google Scholar 

  • Berner, R. A. (1971). Chemical Sedimentology. McGraw-Hill, New York, NY. 240 pp.

    Google Scholar 

  • Berner, R. A. (1975). The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta, 39: 489–504.

    CAS  Google Scholar 

  • Berner, R. A. (1976). The solubility of calcite and aragonite in sea water at atmospheric pressure and 34.5%o salinity. Am. J. Sci., 276: 713–731.

    CAS  Google Scholar 

  • Berner, R. A., and J. W. Morse. (1974). Dissolution kinetics of calcium carbonate in sea water: IV. Theory of calcite dissolution. Am. J. Sci., 274: 108–135.

    CAS  Google Scholar 

  • Berner, R. A., M. R. Scott, and C. Thomlinson, (1970). Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnol. Oceanogr., 15: 544–549.

    CAS  Google Scholar 

  • Bloesch, J. (1974). Sedimentation und Phosphathaushalt im Vierwaldstättersee, Horwer Bucht und im Rotsee. Schweiz. Z. Hydrol., 36 (1): 71–186.

    CAS  Google Scholar 

  • Bradley, W. H. (1929). The varves and climate of the Green River Epoch. U.S. Geol. Sur. Prof. Pap., 158: 87–110.

    Google Scholar 

  • Bradley, W. H. (1937). Non-glacial varves, with selected bibliography. Pp. 32–42. In: Rept. Comm. on Geol. Time. Natl. Res. Conc. Ann. Rpt. App. A.

    Google Scholar 

  • Bradley, W. H. (1948). Limnology and the Eocene lakes of the Rocky Mountain region. Geol. Soc. Am. Bull., 59 (2): 635–648.

    Google Scholar 

  • Bradley, W. H. (1965). Vertical density currents. Science, 150 (3702): 1423–1428.

    PubMed  CAS  Google Scholar 

  • Bricker, O. P., and B. N. Troup. (1975). Sediment-water exchange in Chesapeake Bay. Estuarine Res., 1: 1–28.

    Google Scholar 

  • Brunskill, G. J. (1969). Fayetteville Green Lake, New York. II: Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. Limnol. Ocean/ ogr., 14 (6): 830–847.

    CAS  Google Scholar 

  • Brunskill, G. J., and R. C. Hariss. (1969). Fayetteville Green Lake New York. IV: Interstitial water chemistry of the sediments. Limnol. Oceanogr., 14: 858–861.

    CAS  Google Scholar 

  • Calvert, S. E. (1966). Origin of diatom-rich, varved sediments from the Gulf of California. J. Geol., 74: 546–565.

    Google Scholar 

  • Davis, C. A. (1901). A second contribution to the natural history of marl. J. Geol., 8: 491–506.

    Google Scholar 

  • Davoud, E. (1976). Evolution diagenetique du carbonate de calcium dan les sédiments holocenes du lac de Morat (Suisse). Eclogae Geol. Helv., 69: 190–196.

    Google Scholar 

  • Dean, W. E., Jr., and E. Gorham. (1976). Major chemical and mineral components of profundal surface sediments in Minnesota lakes. Limnol. Oceanogr., 21: 261–268.

    Google Scholar 

  • de Boer, R. D. (1977). Influence of seed crystals on the precipitation of calcite and aragonite. Am. J. Sci., 277: 38–61.

    Google Scholar 

  • De Geer, G. (1912). A geochronology of the last 12,000 years. Pp. 241–253. 11th. Int. Geol. Cong. Stoklm. Proc. S.

    Google Scholar 

  • Dell, C. J. (1972). The origin and characteristics of Lake Superior sediments. Pp. 361–370. Great Lakes Res. Conf. 15th Proc.

    Google Scholar 

  • Emerson, S. (1975). Chemically enhanced CO2 gas exchange in a eutrophic lake: a general Model. Limnol. Oceanogr., 20 (5): 743–753.

    CAS  Google Scholar 

  • Emerson, S. (1976). Early diagenesis in the sediments of an eutrophic lake. Geochim. Cosmochim. Acta, 40: 925–934.

    CAS  Google Scholar 

  • Finckh, P., and K. Kelts. (1976). Geophysical investigations into the nature of Pre-Holocene sediments of Lake Zurich. Eclogae Geol. Helv., 69 (1): 139–148.

    Google Scholar 

  • Folk, R. L. (1974). The natural history of cristalline calcium carbonate: effect of magnesium content and salinity. J. Sed. Petrol., 44: 40–53.

    CAS  Google Scholar 

  • Folk, R. L., and L. S. Land. (1975). Mg/Ca ratio and salinity: two controls over the crystallization of dolomite. Am. Assoc. Petrol. Geol., 59: 60–68.

    CAS  Google Scholar 

  • Forel, F. A. (1901). Handbuch der Seenkunde. J. Engelhorn Verlag, Stuttgart. 247 pp.

    Google Scholar 

  • Geyh, M., J. Merkt, and H. Müller. (1971). Sediment, Pollen and Isotopenanalysen an jahreszeitlich geschichteten Ablagerungen im zentralen Teil des Schleinsees. Arch. Hydrobiol., 69 (3): 366–399.

    Google Scholar 

  • Gieskes, J. (1974). The alkalinity: total carbon dioxide system in seawater. Pp. 123–151. In: E. Goldberg (ed.), The Sea. Vol. 5.

    Google Scholar 

  • Gyger, M., M. Muller-von Moes, and C. Schindler. (1976). Untersuchung zur Klassification Spät und nacheiszeitlicher Sedimente aus dem Zürichsee. Schweiz. Min. Petrog. Mitt., 56: 387–400.

    Google Scholar 

  • Halbfass, W. (1923). Grundzüge einer Vergleichenden Seenkunde. Bomtraeger, Berlin. 337 pp.

    Google Scholar 

  • Harped, H. S., and R. Davis, Jr. (1943). The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J. Am. Chem. Soc., 65: 2030–2037.

    Google Scholar 

  • Harried, H. S., and S. R. Scholes. (1941). The ionization constant of HCO3 from 0° to 50°C. J. Am. Chem. Soc., 63: 1706–1709.

    Google Scholar 

  • Heim, A. (1919). Geologie der Schweiz: Molasseland und Juragebirge. Tauchnitz, Leipzig. 704 pp.

    Google Scholar 

  • Hsü, K. J. (1963). Solubility of dolomite and composition of Florida groundwaters. J. Hydrology, 1: 288–310.

    Google Scholar 

  • Hsü, K. J. (1967). Chemistry of dolomite formation: Pp. 169191. In: G. V. Chilingar, H. J. Bissell, and R. W. Fairbridge eds.), Carbonate Rocks, Physical and Chemical Aspects. Elsevier, Amsterdam.

    Google Scholar 

  • Hsü, K. J. (1978). Stratigraphy of the lacustrine sedimentation in the Black Sea. In: D. Ross and Y. Neprochov, et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Vol. 42B. U.S. Govt. Printing Office, Washington, D.C., pp. 509–524.

    Google Scholar 

  • Hull, H., and A. G. Turnbull. (1973). A thermochemical study of monohydrocalcite. Geochim. Cosmochim. Acta, 37: 685–695.

    CAS  Google Scholar 

  • Hutchinson, G. E. (1957). A Treatise on Limnology. I and H. J. Wiley, London. 1015 pp.

    Google Scholar 

  • Hutchinson, G. E. (1975). A Treatise on Limnology. Ill. J. Wiley, New York, NY. 660 pp.

    Google Scholar 

  • Irion, G. (1973). Die anatolischen Salzseen, ihr Chemismus und die Entstehung ihrer chemischen Sedimente. Arch. Hydrobiol., 71 (4): 517–557.

    Google Scholar 

  • Jacobson, R. L., and D. Langmuir. (1974). Dissociation constants of calcite and CaHCO3 from 0°-50°C. Geochim. Cosmochim. Acta, 38: 301–318.

    CAS  Google Scholar 

  • Kramer, J. R. (1967). Equilibrium concepts in natural water systems. Adv. Chem. Ser., 67: 243–254.

    Google Scholar 

  • Krumbein, W. E. (1975). Biogenic monohydrocalcite spherules in lake sediments of Lake Kivu (Africa) and the Solar Lake (Sinai). Sedimentology, 22: 631–635.

    CAS  Google Scholar 

  • Lalou, C. (1957). Studies on bacterial precipitation of carbonates in sea water. J. Sed. Petrol., 27: 190–195.

    Google Scholar 

  • Lambert, A., K. Kelts, and N. Marshall. (1976). Measurements of density underflows from Walensee, Switzerland. Sedimentology, 23: 87–105.

    Google Scholar 

  • Lerman, A., D. Lal, and M. F. Dacey. (1974). Stokes settling and chemical reactivity of suspended particles in natural waters. Pp. 17–47. In: R. J. Gibbs (ed.), Suspended Solids in Water. Plenum, New York, NY.

    Google Scholar 

  • Li, Y. H. (1973). Vertical eddy diffusion coefficient in Lake Zurich. Schweiz. Z. Hydrol., 35: 1–7.

    Google Scholar 

  • Lippmann, F. (1973). Sedimentary Carbonate Minerals. Springer-Verlag, Berlin. 196 pp.

    Google Scholar 

  • Logan, B. W., R. Rezak, and R. N. Ginsburg. (1964). Classification and environmental significance of algal stroma-tolites. J. Geol., 72: 68–83.

    Google Scholar 

  • Lyell, Ch. (1830). Principles of Geology. Vol. 1, J. Murray, London. 519 pp.

    Google Scholar 

  • Megard, R. O. (1968). Planktonic photosynthesis and the environment of calcite carbonate deposition in lakes. Interim Rept. 2. Limnol Res. Center. U. Minn.

    Google Scholar 

  • Minder, L. (1922). Ueber biogene Entkalkung im Zürichsee. Verh. Int. Verein. Limnol., 1: 20–23.

    Google Scholar 

  • Minder, L. (1926). Biologische-chemische Untersuchungen im Zürichsee. Rev. Hydrol., 3 (3): 1–70.

    Google Scholar 

  • Minder, L. (1943). Der Zurichsee im Lichte der Seetypen-lehre. Neujahrsblatt. Nat. Forsch. Ges. Zürich, 145: 183.

    Google Scholar 

  • Müller, G. (1966). Die Sedimentbildung im Bodensee. Naturwissenschaften, 53: 237–247.

    Google Scholar 

  • Müller, G. (1969). Diagenetic changes in interstitial waters of Holocene Lake Constance sediments. Nature, 224: 258–259.

    Google Scholar 

  • Müller, G. (1970). High magnesian calcite and protodolomite in Lake Balaton (Hungary) sediments. Nature, 226: 749750.

    Google Scholar 

  • Müller, G. (1971a). Aragonite inorganic precipitation in a freshwater lake. Nature Phy. Sci., 229: 18.

    Google Scholar 

  • Müller, G. (1971b). Sediments of Lake Constance. Pp. 237–252. In: Sedimentology of Parts of Central Europe. Guidebook, VII Int. Sed. Congress, Heidelberg. 1971.

    Google Scholar 

  • Müller, G., G. Irion, and U. Foerstner. (1972). Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften, 59 (4): 158–164.

    Google Scholar 

  • Nipkow, F. (1920). Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Z. Hydrol., 1: 1–27.

    Google Scholar 

  • Nipkow, F. (1927). Ueber das Verhalten der Skelette planktischer Kieselalgen im geschichteten Tiefenschlamm des Zürich und Baldeggersees. Diss ETH Zurich, 445.

    Google Scholar 

  • Ohle, W. (1952). Die Hypolimnetische-Kohlendioxyd Akkumulation als productionsbiologischer Indicator. Arch. Hydrobiol., 46: 153–285.

    Google Scholar 

  • O’Melia, C. R. (1972). An approach to the modeling of lakes. Schw. Z. Hydrologie 34 (1), 1–33.

    Google Scholar 

  • Otsuki, A., and R. G. Wetzel, (1974). Calcium and total alkalinity budgets and calcium carbonate precipitation of a small hard-water lake. Arch. Hydrobiol., 73: 14–30.

    Google Scholar 

  • Pia, J. (1933). Die rezenten Kalksteine. Leipzig. 418 pp.

    Google Scholar 

  • Plummer, L. N. (1975). Mixing of seawater with calcium carbonate ground water. Mem. Geol. Soc. Am., 142: 219–236.

    CAS  Google Scholar 

  • Pollock, J. B. (1918). Blue-green algae as agents in the deposition of marl in Michigan lakes. Rept. Mich. Acad. Sci., 20: 247–261.

    CAS  Google Scholar 

  • Ross, D., et al. (1978). Initial Reports of the Deep Sea Drilling Project. Vol. 42B. U.S. Govt. Printing Office, Washington, D.C. 1244 pp.

    Google Scholar 

  • Rossknecht, H. (1977). Zur Autochthonen Calcitfällung im Bodensee-Obersee. Arch. Hydrobiol. 81: 35–64.

    CAS  Google Scholar 

  • Ruttner, F. (1962). Grundriss der Limnologie. Gruyter, Berlin. 314 pp.

    Google Scholar 

  • Santschi, P. (1975). Chemische Prozesse im Bielersee. Ph.D. thesis, University of Bern, Switzerland 307 pp.

    Google Scholar 

  • Sapozhnikov, D. G., and A. J. Isvetkov. (1959). Precipitation of hydrous calcium carbonate on the bottom of lake Issyk-Kul. Dokl. Acad. Nauk. SSSR, 124: 402–405.

    CAS  Google Scholar 

  • Schäfer, A. (1972). Petrographische und Stratigraphische Untersuchungen an den rezenten Seesedimenten des Untersees/Bodensee. Neues Jahrb. Min. Abh., 117: 118–142.

    Google Scholar 

  • Schäfer, A. (1973). Zur Entstehung von Seekreide. Neues Jahrb. Geol. Pal. Mh., 1973 (4): 216–230.

    Google Scholar 

  • Schäfer, A., and K. R. Stapf. (1972). Calcite whitings in Bodensee-Untersee. Natur. Mus., 102 (8).

    Google Scholar 

  • Schöttle, M., and G. Müller. (1968). Recent carbonate sedimentation in the Gnadensee (Lake Constance) Germany. Pp. 148–156. In: G. Müller and G. Friedman (eds.), Recent Developements in Carbonate Sedimentology in Central Europe. Springer-Verlag, Berlin.

    Google Scholar 

  • Serruya, C. (1969a). Le dépot du lac Léman en relation avec l’evolution du bassin sédimentaire et les caractéres du milieu lacustre. Arch. Sci. Geneve, 22: 125–254.

    CAS  Google Scholar 

  • Serruya, C. (1969b). Problems of sedimentation in the Lake of Geneva. Verh. Int. Verein. Limnol., 17: 208–217.

    Google Scholar 

  • Stiller, M., and M. Magaritz. (1974). Carbon-13 enriched carbonate in interstitial waters of lake Kinneret Sediments. Limnol. Oceanogr., 19 (5): 849–853.

    CAS  Google Scholar 

  • Stoffers, P. (1975a). Recent carbonate sedimentation in the lakes of Plitvice (Yugoslavia). Neues Jahrb. Min. Mh., 1975 (9): 412–418.

    Google Scholar 

  • Stoffers, P. (1975b). Sedimentpetrographische, geochemische und paläoklimatische Untersuchungen an Ostafrikanischen Seen. Habilitationschrift, Univ. Heidelberg. 118 pp.

    Google Scholar 

  • Stoffers, P., and R. Fischbeck (1974). Monohydrocalcite in the sediments of Lake Kivu (East Africa). Sedimentology, 21: 163–170.

    CAS  Google Scholar 

  • Strong, A., and B. J. Eadie. (1978). Satellite observations of calcium carbonate precipitation in the Great Lakes. Limnol. Oceanogr. (In press).

    Google Scholar 

  • Sturm, M., and A. Matter. (1972). Sedimente und Sedimentationsvorgänge im Thunersee. Eclogae Geol. Helv., 65 (3): 563–590.

    Google Scholar 

  • Stumm, W., and J. Morgan. (1970). Aquatic Chemistry. Wiley Interscience, New York, NY. 563 pp.

    Google Scholar 

  • Stumm, W., and E. Stumm-Zollinger. (1968). Chemische Prozesse in natülichen Gewässern. Chimia, 22: 325–337.

    CAS  Google Scholar 

  • Stuvier, M. (1970). Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. J. Geophys. Res., 75: 5247–5257.

    Google Scholar 

  • Taylor, G. F. (1975). The occurrence of monohydrocalcite in two small lakes in the southeast of South Australia. Am. Mineral., 60: 690–697.

    CAS  Google Scholar 

  • Thomas, E. A. (1969). Kultur beinflusste chemische und biologische Veränderungen des Zürichsees im Verlauf von 70 Jahren. Mitt. Int. Verein. Limnol., 17: 226–239.

    Google Scholar 

  • Thomas, R. L., A. L. Kemp, and C. F. M. Lewis. (1973). The surficial sediments of Lake Huron. Can. J. Earth Sci., 10: 226–271.

    CAS  Google Scholar 

  • Thompson, R., and K. Kelts. (1974). Holocene sediments and magnetic stratigraphy from Lakes Zug and Zurich, Switzerland. Sedimentology, 21: 577–596.

    CAS  Google Scholar 

  • Truesdell, A. H., and B. F. Jones. (1974). WATEQ, a computer program for calculating chemical equilibria of natural water. J. Res. U.S. Geol. Survey, 2 (2): 233–248.

    CAS  Google Scholar 

  • Verduin, J. (1975). Rate of carbon dioxide transport acrossair-water boundaries in Lakes. Limnol. Oceanogr., 20: 1052.

    CAS  Google Scholar 

  • Vernet, J. P., M. Meybeck, A. Pachoud, and G. Scolari. (1971). Le Léman: Un synthese bibliographique. Bull. Bur. Res. Geol. Mine. (Ser. 2), IV (2): 47–84.

    Google Scholar 

  • Welten, M. (1944). Pollenânalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Veroeffentl. Geobot. Inst. Ruebel. in Zurich, 21. 201 pp.

    Google Scholar 

  • Wetzel, R. G. (1960). Marl encrustations on hydrophytes in several Michigan lakes. Oikos, 11: 223–228.

    Google Scholar 

  • Wetzel, R. G. (1975). Limnology. W. B. Saunders, Philadelphia, PA. 743 pp.

    Google Scholar 

  • Wigley, T. M. L., and L. N. Plummer. (1976). Mixing of carbonate waters. Geochim. Cosmochim. Acta, 40: 989–995.

    CAS  Google Scholar 

  • Zimmermann, P. (1961). Chemische und bakteriologische Untersuchungen im unteren Zürichsee während der Jahre 1948–1957. Schweiz. Z. Hydrol., 23: 343–395.

    Google Scholar 

  • Zimmermann, U. (1975). Limnologische Untersuchungen am Trinkwasserspeicher Zürichsee. Gas-Wasser-Abwasser, 55 (9): 473–480.

    CAS  Google Scholar 

  • Züllig, H. (1956). Sedimente als Ausdruck des Zustandes eines Gewässers. Schweiz. Z. Hydrol., 18. 487–529.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelts, K., Hsü, K.J. (1978). Freshwater Carbonate Sedimentation. In: Lerman, A. (eds) Lakes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1152-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1152-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1154-7

  • Online ISBN: 978-1-4757-1152-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics