Skip to main content
Log in

Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process

Environmental Science and Pollution Research

  • AOPs: Recent Advances to Overcome Barriers in the Treatment of Water, Wastewater and Air
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research paper describes the study of a reduction-oxidation system using commercial steel wool (Fe0) and H2O2 for degradation of the dye Reactive Black 5 and aromatic compounds in water. The reductive process alone allowed the almost complete removal of color (97 ± 1 %) after 60 min of reaction. The decrease in spectral area (λ = 599 nm) associated with the chromophore group indicates breakage of the azo bonds. Moreover, the significant change in UV spectra can be associated with the formation of aromatic amines. Regarding the transformation products, a spectrophotometric method based on the diazotization reaction was employed to identify aromatic amines after reductive process, using sulfanilic acid as a model of aromatic amines. In addition, association with Fenton reagents improved the efficiency in the system with 93 ± 1 % degradation of intermediates formed during the reductive process. Ecotoxicological analysis revealed that the dye solution, after the reductive and oxidative processes, was not toxic to Lactuca sativa seeds. For Daphnia magna, the EC50 (%) values observed revealed that dye solution has an EC50(%) = 74.1 and after reductive process, the toxicity increased (EC50(%) = 63.5), which might be related to the formation of aromatic amines. However, after the Fenton process, the EC50 (%) was >100. These results demonstrated that the Fenton reaction using steel wool as an iron source was very efficient to decrease color, aromatic transformation products, and the ecotoxicity of Reactive Black 5 in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (1995) APHA 3500D: standart methods for examination of water and wastewater. American Public Health Association 19th edition, New York

  • APHA (1995) APHA 5550B: standart methods for examination of water and wastewater. American Public Health Association 18th edition, New York

  • ABNT (2009) NBR 12713: aquatic ecotoxicology-acute toxicity-test method with Daphnia spp (Crustacea, Cladocera). Brazilian Association of Technical Standards, Portuguese

    Google Scholar 

  • Arslan-Alaton I, Gursoy BH, Schmidt J-E (2008) Advanced oxidation of acid and reactive dyes: effect of Fenton treatment on aerobic, anoxic and anaerobic processes. Dyes Pigments 78(2):117–130. doi:10.1016/j.dyepig.2007.11.001

    Article  CAS  Google Scholar 

  • Bautitz IR, Velosa AC, Nogueira RFP (2012) Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88(6):688–692. doi:10.1016/j.chemosphere.2012.03.077

    Article  CAS  Google Scholar 

  • Byberg R, Cobb J, Diez L, Thompson W (2013) Comparison of photocatalytic degradation of dyes in relation to their structure. Environ Sci Pollut R 20:3670–3581. doi:10.1007/s11356-013-1551-y

    Article  Google Scholar 

  • Chatterjee S, Lim S-R, Woo SH (2010) Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chem Eng J 160(1):27–32. doi:10.1016/j.cej.2010.02.045

    Article  CAS  Google Scholar 

  • CONAMA (2011) Resolution No 430 of May 13. National Council of the Environment of Brazil, (in Portuguese)

  • Chang S, Wang K, Chao S, Peng T, Huang L (2009) Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process. J Hazard Mater 166:1127–1133. doi:10.1016/j.jhazmat.2008.12.021

    Article  CAS  Google Scholar 

  • Dong J, Zhao Y, Zhao R, Zhou R (2010) Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron. J Environ Sci 22(11):1741–1747. doi:10.1016/S1001-0742(09)60314-4

    Article  CAS  Google Scholar 

  • Duić N, Urbaniec K, Huisingh D (2014) Components and structures of the pillars of sustainability. J Clean Prod doi: http://dx.doi.org/10.1016/j.jclepro.2014.11.030

  • Dutta S, Saha R, Kalita H, Bezbaruah A (2016) Rapid reductive degradation of azo and anthraquinone dyes by nanoscale zero valent iron. Environ technol 5:176–187. doi:10.1016/j.eti.2016.03.001

    Google Scholar 

  • El-Dein AM, Libra J, Wiesmann U (2003) Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation. Chemosphere 52(6):1069–1077. doi:10.1016/S0045-6535(03)00226-1

    Article  CAS  Google Scholar 

  • EPA (1989) Protocols for short term toxicity screening of hazardous waste sites. A.8.7. Lettuce root elongation (Lactuca sativa). EUA, Chicago

    Google Scholar 

  • Fang Z, Qiu X, Chen J, Qiu X (2011) Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination 267(1):34–41. doi:10.1016/j.desal.2010.09.003

    Article  CAS  Google Scholar 

  • Feitz AJ, Guan J, Chattopadhyay G, Waite TD (2002) Photo-Fenton degradation of dichloromethane for gas phase treatment. Chremosphere 48(4):401–406. doi:10.1016/S0045-6535(02)00081-4

    Article  CAS  Google Scholar 

  • Fu F, Dionysiou D, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 207:194–205. doi:10.1016/j.jhazmat.2013.12.062

    Article  Google Scholar 

  • He Y, Gao J, Feng F, Liu C, Peng Y-Z, Wang S-Y (2012) The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chem Eng J 179:8–18. doi:10.1016/j.cej.2011.05.107

    Article  CAS  Google Scholar 

  • He C, Yang J, Zhu L, Zhang Q, Liao W, Liu S, Shu D (2013) pH-dependent degradation of acid orange II by zero-valent iron in presence of oxygen. Sep Purif Technol 117:59–68. doi:10.1016/j.seppur.2013.04.028

    Article  CAS  Google Scholar 

  • Huang L, Zhou S, Jin F, Huang J, Bao N (2014) Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution. Colloid Surface A 447:59–66. doi:10.1016/j.colsurfa.2014.01.037

    Article  CAS  Google Scholar 

  • Jafari N, Kasra-Kermanshahi R, Soudi M, Mahvi A, Gharavi S (2012) Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis Jks2-TiO2/UV. J environ Health 9:33. doi:10.1186/1735-2746-9-33

    Google Scholar 

  • Lai P, Zhao H-z, Wang C, Ni J-r (2007) Advanced treatment of coking wastewater by coagulation and zero-valent iron processes. J Hazard Mater 147(1–2):232–239. doi:10.1016/j.jhazmat.2006.12.075

    Article  CAS  Google Scholar 

  • Lin YT, Weng C-H, Chen F-Y (2008) Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 64(1):26–30. doi:10.1016/j.seppur.2008.08.012

    Article  CAS  Google Scholar 

  • Liu H, Sun P, Liu H, Yang S, Wang L, Wang Z (2015) Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. Chemosphere 135:182–188. doi:10.1016/j.chemosphere.2015.04.036

    Article  CAS  Google Scholar 

  • Liu T, Wang Z-L, Yan X, Zhang B (2014) Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron. Chem Eng J 245:34–40. doi:10.1016/j.cej.2014.02.011

    Article  CAS  Google Scholar 

  • Monteiro M, Santos C, Mann RM, Soares AMVM, Lopes T (2007) Evaluation of cadmium genotoxicity in Lactuca sativa L. using nuclear microsatellites. Environ Exp Bot 60(3):421–427. doi:10.1016/j.envexpbot.2006.12.018

    Article  CAS  Google Scholar 

  • Oliveira MC, Nogueira RFP, Neto JAG, Jardim WF, Rohwedder JJ (2001) System injection spectrophotometric flow to monitor hydrogen peroxide in photodegradation process for photo-Fenton reaction. Quím nova 24(2):188–190. doi:10.1590/S0100-40422001000200007

    Article  CAS  Google Scholar 

  • Patel U, Ruparelia JP, Patel MU (2011) Electrocoagulation treatment of simulated floor-wash containing Reactive Black 5 using iron sacrificial anodo. J Hazard Mater 197:128–136. doi:10.1016/j.jhazmat.2011.09.064

    Article  CAS  Google Scholar 

  • Pereira W, Freire R (2006) Azo dye degradation by recycled waste zero-valent iron powder. J Braz Chem Soc 17:832–838. doi:10.1590/S0103-50532006000500003

    Article  CAS  Google Scholar 

  • Pielesz A, Baranowska I, Rybak A, Włochowicz A (2002) Detection and determination of aromatic amines as products of reductive splitting from selected azo dyes. Ecotox Environ Saf 53(1):42–47. doi:10.1006/eesa.2002.2191

    Article  CAS  Google Scholar 

  • Puentes J, Florido A, Cardona J, Bohorquez P, Campos C, Gutiérrez V, Pedroza A (2012) Simultaneous decolorization and detoxification of black reactive 5 using TiO2 deposited over borosilicate glass. Univ Scien 17(1):53–63. doi:10.11144/javeriana.SC17-1.sdad

    Article  Google Scholar 

  • Şengil İA, Özacar M (2009) The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. J Hazard Material 161(2–3):1369–1376. doi:10.1016/j.jhazmat.2008.04.100

    Google Scholar 

  • Shen J, Zhou Z, Ou C, Sun X, Li J, Han W, Wang L (2012) Reductive transformation and detoxification mechanism of 2,4-dinitrochlorobenzene in combined zero valent iron and anaerobic-aerobic process. J Environ Sci 24(11):1900–1907. doi:10.1016/S1001-0742(11)61054-1

    Article  CAS  Google Scholar 

  • Shi J, Yi S, He H, Long C, Li A (2013) Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and. Chem Eng J 230:166–171. doi:10.1016/j.cej.2013.06.088

    Article  CAS  Google Scholar 

  • Sobrero MC, Ronco A (2004) Acute toxicity test with lettuce seeds (Lactuca sativa L.). Toxicological Testing and Methods for Quality of Water Evaluation 4:71–79 (in Spanish)

    Google Scholar 

  • Sohrabi MR, Amiri S, Masoumi HRF, Moghri M (2014) Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology. J Ind Eng Chem 20(4):2535–2542. doi:10.1016/j.jiec.2013.10.037

    Article  CAS  Google Scholar 

  • Souza C, Peralta-Zamora P (2005) Degradation of reactive dyes by iron metalic sistem/hydrogen peroxide. Quim Nov. 28:226–228 (in Portuguese)

  • Sponza DT, Kuscu ÖS (2011) Relationships between acute toxicities of para nitrophenol (p-NP) and nitrobenzene (NB) to Daphnia magna and Photobacterium phosphoreum: physicochemical properties and metabolites under anaerobic/aerobic sequentials. J Hazard Mater 185(2–3):1187–1197. doi:10.1016/j.jhazmat.2010.10.030

    Article  CAS  Google Scholar 

  • Sun X, Wang X, Li J, Wang L (2014) Degradation of nitrobenzene in groundwater by nanoscale zero-valent iron particles incorporated inside the channels of SBA-15 rods. J Taiwan Inst Chem Eng 45(3):996–1000. doi:10.1016/j.jtice.2013.09.026

    Article  CAS  Google Scholar 

  • Taha MR, Ibrahim AH (2014) Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. J Environ Chem Eng 2(1):1–8. doi:10.1016/j.jece.2013.11.021

    Article  CAS  Google Scholar 

  • Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicol 16:197–203. doi:10.1007/s10646-006-0120-2

    Article  CAS  Google Scholar 

  • Vedrenne M, Vasquez-Medrano R, Prato-Garcia D, Frontana-Uribe BA, Hernandez-Esparza M, de Andrés JM (2012) A ferrous oxalate mediated photo-Fenton system: toward an increased biodegradability of indigo dyed wastewaters. J Hazard Mater 243:292–301. doi:10.1016/j.jhazmat.2012.10.032

    Article  CAS  Google Scholar 

  • Wang K-S, Lin C-L, Wei M-C, Liang H-H, Li H-C, Chang C-H, Fang Y-T, Chang S-H (2010) Effects of dissolved oxygen on dye removal by zero-valent iron. J Hazard Mater 182:886–895. doi:10.1016/j.jhazmat.2010.07.002

  • Wang X, Wang L, Li J, Qiu J, Cai C, Zhang H (2014) Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Sep Purif Technol 122:41–46. doi:10.1016/j.seppur.2013.10.037

    Article  CAS  Google Scholar 

  • Weng C, Lin Y, Yuan H (2013) Rapid decoloration of Reactive Black 5 by an advanced Fenton process in conjunction with ultrasound. Sep Purif Technol 117:75–82. doi:10.1016/j.seppur.2013.03.047

    Article  CAS  Google Scholar 

  • Young BJ, Riera NI, Beily ME, Bres PA, Crespo DC, Ronco AE (2012) Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotox Environ Saf 76:182–186. doi:10.1016/j.ecoenv.2011.09.019

    Article  CAS  Google Scholar 

  • Zha S, Cheng Y, Gao Y, Chen Z, Megharaj M, Naidu R (2014) Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem Eng J 255:141–148. doi:10.1016/j.cej.2014.06.057

    Article  CAS  Google Scholar 

  • Zhang C, Zhu Z, Zhang H, Hu Z (2012) Rapid decolorization of Acid Orange II aqueous solution by amorphous zero-valent iron. J Environ Sci 24(6):1021–1026. doi:10.1016/S1001-0742(11)60894-2

    Article  CAS  Google Scholar 

  • Zhang H, Duan L, Zhang Y, Wu F (2005) The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron. Dyes Pigm 65(1):39–43. doi:10.1016/j.dyepig.2004.06.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from CAPES (Commission for the Improvement of Higher Education Personnel in Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Cuervo Lumbaque.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuervo Lumbaque, E., Gomes, M.F., Da Silva Carvalho, V. et al. Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process. Environ Sci Pollut Res 24, 6126–6134 (2017). https://doi.org/10.1007/s11356-016-7150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7150-y

Keywords

Navigation