Skip to main content

Dye Pollution in Water and Wastewater

  • Chapter
  • First Online:
Novel Materials for Dye-containing Wastewater Treatment

Abstract

The presence of dye in water stream leads to unexceptional effects on living life. As dyes are consumed globally from small-scale to large-scale industries inculcating tanneries, food, cosmetic, textile, medicinal sectors with the production of 1,000,000 tons all over the world. Majorly, the textile sector plays a pertinent role in dye emissions into the ecosystem. Only dying industries discharge about 7.5 metric tons annually. The complex structures of dye comprising of aromatic rings bonded with different functional groups having π-electron could absorb light within 380–700 nm spectra. They impart coloration due to the presence of chromogens and chromophores. Out of several natural and synthetic dyes, azo group proliferation has been highly carcinogenic due to amine and benzidine emissions. Besides this, the fact of being non-biodegradable makes the dye molecules last longer in the environment producing hazards. Henceforth, eradication of dye molecules from wastewater is thus needed before discharging the stream into the environment with long- and short-term effects. The severe implications have been reported for the aquatic life due to direct contact. Whereas to human life, there were observations from skin irritations to cancer-like disease. Several approaches were reported for the treatment of dye-containing streams but the exploration for the best available technique is still ongoing. So, this chapter collects comprehensive facts about dyes, its harmful effect, and approaches for the treatment at a worldwide level and Indian perspective. Additionally, the article draws out the comparative analysis for available techniques and states the recent advancements for the purification of dye-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maheshwari K, Solanki YS, Ridoy MSH, Agarwal M, Dohare R, Gupta R (2020) Ultrasonic treatment of textile dye effluent utilizing microwave-assisted activated carbon. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13410

    Article  Google Scholar 

  2. Agrawal M, Maheshwari K (n.d.) Textile water: characterization, environmental impact and treatment, vol 2, pp 47–75

    Google Scholar 

  3. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13. https://doi.org/10.1016/j.desal.2011.07.019

    Article  CAS  Google Scholar 

  4. Li W, Mu B, Yang Y (2019) Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour Technol 277:157–170. https://doi.org/10.1016/j.biortech.2019.01.002

    Article  CAS  Google Scholar 

  5. Nasseh N, Arghavan FS, Rodriguez-Couto S, Hossein Panahi A (2020) Synthesis of FeNi3/SiO2/CuS magnetic nano-composite as a novel adsorbent for Congo Red dye removal. Int J Environ Anal Chem 7319. https://doi.org/10.1080/03067319.2020.1754810

  6. Saini RD (2017) Textile organic dyes: polluting effects and elimination methods from textile waste water. Int J Chem Eng Res 9:975–6442 (2017). http://www.ripublication.com

  7. Mary Ealias A, Saravanakumar MP (2019) A critical review on ultrasonic-assisted dye adsorption: mass transfer, half-life and half-capacity concentration approach with future industrial perspectives. Crit Rev Environ Sci Technol 49:1959–2015 (2019). https://doi.org/10.1080/10643389.2019.1601488

  8. Bhat SA, Zafar F, Mondal AH, Mirza AU, Rizwanul Haq QM, Nishat N (2020) Efficient removal of Congo red dye from aqueous solution by adsorbent films of polyvinyl alcohol/melamine-formaldehyde composite and bactericidal effects. J Clean Prod 255:120062. https://doi.org/10.1016/j.jclepro.2020.120062

  9. Al Prol AE (2019) Study of environmental concerns of dyes and recent textile effluents treatment technology: a review. Asian J Fish Aquat Res 3:1–18. https://doi.org/10.9734/ajfar/2019/v3i230032.

  10. Routoula E, Patwardhan SV (2020) Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ Sci Technol 54:647–664. https://doi.org/10.1021/acs.est.9b03737

    Article  CAS  Google Scholar 

  11. Hassaan MA, El Nemr A (2017) Health and environmental impacts of dyes: mini review. Am J Environ Sci Eng 1:64–67. https://doi.org/10.11648/j.ajese.20170103.11

    Article  Google Scholar 

  12. Kumar A, Sehgal M (2018) Hydrogen fuel cell technology for a sustainable future: a review. SAE Tech Pap 2018:2588–2591. https://doi.org/10.4271/2018-01-1307

  13. Azari A, Nabizadeh R, Nasseri S, Mahvi AH, Mesdaghinia AR (2020) Comprehensive systematic review and meta-analysis of dyes adsorption by carbon-based adsorbent materials: classification and analysis of last decade studies. Chemosphere 250:126238. https://doi.org/10.1016/j.chemosphere.2020.126238

  14. Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ 717:137222. https://doi.org/10.1016/j.scitotenv.2020.137222

  15. Yeow PK, Wong SW, Hadibarata T (2021) Removal of Azo and Anthraquinone dye by plant biomass as adsorbent—a review. 11:8218–8232

    Google Scholar 

  16. Menon P, Singh TSA, Pani N, Nidheesh PV (2020) Chemosphere electro-fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater. Chemosphere 128739. https://doi.org/10.1016/j.chemosphere.2020.128739

  17. Masarbo RS, Karegoudar TB (2020) Decolourisation of toxic azo dye Fast Red E by three bacterial strains: process optimisation and toxicity assessment. Int J Environ Anal Chem 00:1–11. https://doi.org/10.1080/03067319.2020.1759048

    Article  CAS  Google Scholar 

  18. Qin Q, Ma J, Liu K (2009) Adsorption of anionic dyes on ammonium-functionalized MCM-41. 162:133–139. https://doi.org/10.1016/j.jhazmat.2008.05.016

  19. Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E (2020) Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01021-w

    Article  Google Scholar 

  20. Yazdani MR (2018) Engineered adsorptive materials for water remediation

    Google Scholar 

  21. Leaper S, Abdel-Karim A, Gad-Allah TA, Gorgojo P (2019) Air-gap membrane distillation as a one-step process for textile wastewater treatment. Chem Eng J 360:1330–1340. https://doi.org/10.1016/j.cej.2018.10.209

    Article  CAS  Google Scholar 

  22. Gürses A, Açıkyıldız M, Güneş K, Gürses MS (2016) Dyes and pigments: their structure and properties. SpringerBriefs in green chemistry for sustainability, pp 13–29. https://doi.org/10.1007/978-3-319-33892-7

  23. Mohebali S, Bastani D, Shayesteh H (2019) Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: acid and CTAB-acid modified celery (Apium graveolens). J Mol Struct 1176:181–193. https://doi.org/10.1016/j.molstruc.2018.08.068

    Article  CAS  Google Scholar 

  24. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s13762-018-2130-z

  25. Benkhaya S, M’ rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891. https://doi.org/10.1016/j.inoche.2020.107891

  26. Tanvi DA, Lohit RT, Pratam KM, Vijayalakshmi BK, Devaraja TN, Mahanthesh V, Chakra PS, Devaraja G, Ramesh A (2020) Biosorption of heavy metal arsenic from Industrial Sewage of Davangere District, Karnataka, India, using indigenous fungal isolates. Appl Sci.https://doi.org/10.1007/s42452-020-03622-0

  27. Eriksson E, Auffarth K, Eilersen AM, Henze M, Ledin A (2003) Household chemicals and personal care products as sources for xenobiotic organic compounds in grey wastewater. Water SA 29:135–146. https://doi.org/10.4314/wsa.v29i2.4848

    Article  CAS  Google Scholar 

  28. Amin M, Khodabakhshi A (2012) Determination of malachite green in trout tissue and effluent water from fish farms. Int J Environ Health Eng 1:10. https://doi.org/10.4103/2277-9183.94394

    Article  Google Scholar 

  29. li2013.pdf (n.d.)

    Google Scholar 

  30. Rahi RK, Prasad RN, Gupta V (2018) Analysis of physico-chemical properties of textile effluents collected from Sanganer, Jaipur. https://doi.org/10.36282/IJASRM/3.7.2018.627

  31. Ahmed I, Haque F, Rahman MATMT, Parvez AK, Mou TJ (2020) Screening of Methyl Red degrading bacteria isolated from textile effluents of Savar Area, Dhaka, Bangladesh 301–318. https://doi.org/10.4236/abb.2020.117022

  32. Khatun M, Mohammad G, Rahman MT, Kabir SE (2020) Organic waste removal from pharmaceutical and textile effluents using composite adsorbent 55:197–206. https://doi.org/10.3329/bjsir.v55i3.49393

  33. Sani ZM, Dalhatu AS, Namadina MM, Abdullahi IL (2020) Impact assessment of dyeing processing activity on soils of selected sites in Kano Metropolis, Nigeria. 6:219–225

    Google Scholar 

  34. Zhou H, Zhou L, Ma K (2020) Science of the total environment micro fiber from textile dyeing and printing wastewater of a typical industrial park in China: occurrence, removal and release. Sci Total Environ 739:140329. https://doi.org/10.1016/j.scitotenv.2020.140329

  35. Ahmad MT, Sushil M, Krishna M (2012) Influence of dye industrial effluent on physico chemical characteristics properties of soil at Bhairavgarh, Ujjain, MP, India. 1:50–53

    Google Scholar 

  36. Gupta K, Khatri OP (2019) Fast and efficient adsorptive removal of organic dyes and active pharmaceutical ingredient by microporous carbon: effect of molecular size and charge. Chem Eng J 378:122218. https://doi.org/10.1016/j.cej.2019.122218

  37. Lokhande RS, Singare PU, Pimple DS (2011) Study on physico-chemical parameters of waste water effluents from Taloja Industrial Area of Mumbai, India. 1:1–9. https://doi.org/10.5923/j.ije.20110101.01

  38. Ranganathan K, Karunagaran K, Sharma DC (2007) Recycling of wastewaters of textile dyeing industries using advanced treatment technology and cost analysis—case studies. 50:306–318. https://doi.org/10.1016/j.resconrec.2006.06.004

  39. Dubey SK, Yadav R, Chaturvedi RK, Yadav RK, Sharma VK, Minhas PS (2010) Contamination of ground water as a consequence of land disposal of dye waste mixed sewage effluents : a case study of Panipat District of Haryana, India. 295–300. https://doi.org/10.1007/s00128-010-0073-2

  40. Kumar S, Walia YK (2018) Study on physico-chemical parameters of water from different dyeing units effluents in Ludhiana City, India 4:145–150

    Google Scholar 

  41. Gupta R, Jindal T, Khan AS, Srivastava P, Kanaujia A (2019) Assessment of ground water quality and its suitability for drinking in industrial area Jajmau, Kanpur, India. 19:1569–1571

    Google Scholar 

  42. Mostafa MRIMG (2020) Characterization of textile dyeing effluent and its treatment using polyaluminum chloride. Appl Water Sci 10:1–10. https://doi.org/10.1007/s13201-020-01204-4

  43. Madamwar D, Onkar T, Jain K (2019) Mapping of research outcome on remediation of dyes, dye intermediates and textile industrial waste. 1–228. http://dbtindia.gov.in/sites/default/files/Textile_Dyes_Compendium-Final.pdf

  44. Dey S, Islam A (2015) A review on textile wastewater characterization in Bangladesh. Academia.edu. Resour Environ 5:15–44. https://doi.org/10.5923/j.re.20150501.03

  45. Samir S, Al-tohamy R, Koutra E, El-naggar AH, Kornaros M, Sun J (2021) Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. J Hazard Mater 403:123575. https://doi.org/10.1016/j.jhazmat.2020.123575

  46. Methneni N, Anthonissen R, Van De Maele J, Trifa F, Verschaeve L, Ben Mansour H (2020) Assessment of natural coagulants to remediate Tunisian textile wastewater by combining physicochemical, analytical, and toxicological data

    Google Scholar 

  47. Li F, Huang J, Xia Q, Lou M, Yang B, Tian Q, Liu Y (2018) Separation and purification technology direct contact membrane distillation for the treatment of industrial dyeing wastewater and characteristic pollutants. Sep Purif Technol 195:83–91. https://doi.org/10.1016/j.seppur.2017.11.058

    Article  CAS  Google Scholar 

  48. Rathore J (2012) Studies on pollution load induced by dyeing and printing units in River. Int J Environ Sci 3:735–742. https://doi.org/10.6088/ijes.2012030131072

    Article  CAS  Google Scholar 

  49. Sharma N, Sharma SK, Gehlot A (2014) Influence of dyeing and printing industrial effluent on physicochemical Characteristics of water—case study on the printing cluster of Bagru, Jaipur (Rajasthan), India. IOSR J Appl Chem 7:61–64. https://doi.org/10.9790/5736-07416164

  50. Reddy S, Osborne WJ (2020) Heavy metal determination and aquatic toxicity evaluation of textile dyes and effluents using Artemia salina. Biocatal Agric Biotechnol 25:101574. https://doi.org/10.1016/j.bcab.2020.101574

  51. Novotný Č, Dias N, Kapanen A, Malachová K, Vándrovcová M, Itävaara M, Lima N (2006) Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere 63:1436–1442. https://doi.org/10.1016/j.chemosphere.2005.10.002

    Article  CAS  Google Scholar 

  52. Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J Biotechnol 101:49–56. https://doi.org/10.1016/S0168-1656(02)00302-4

    Article  CAS  Google Scholar 

  53. Vinitnantharat S, Chartthe W, Pinisakul A (2008) Toxicity of reactive red 141 and basic red 14 to algae and waterfleas. Water Sci Technol 58:1193–1198. https://doi.org/10.2166/wst.2008.476

    Article  CAS  Google Scholar 

  54. de Luna LAV, da Silva THG, Nogueira RFP, Kummrow F, Umbuzeiro GA (2014) Aquatic toxicity of dyes before and after photo-Fenton treatment. J Hazard Mater 276:332–338. https://doi.org/10.1016/j.jhazmat.2014.05.047

    Article  CAS  Google Scholar 

  55. Croce R, Cinà F, Lombardo A, Crispeyn G, Cappelli CI, Vian M, Maiorana S, Benfenati E, Baderna D (2017) Aquatic toxicity of several textile dye formulations: acute and chronic assays with Daphnia magna and Raphidocelis subcapitata. Ecotoxicol Environ Saf 144:79–87. https://doi.org/10.1016/j.ecoenv.2017.05.046

    Article  CAS  Google Scholar 

  56. Aksu O, Yildirim NC, Danabas D, Yildirim N (2017) Biochemical impacts of the textile dyes Remazol Brillant Blue R and Congo Red on the crayfish Astacus leptodactylus (Decapoda, Astacidae). Crustaceana 90:1563–1574. https://doi.org/10.1163/15685403-00003738

    Article  Google Scholar 

  57. Chung K-T (2016) Azo dyes and human health: a review. Environ Sci Health Care 34:1–60. https://doi.org/10.1080/10590501.2016.1236602

    Article  CAS  Google Scholar 

  58. Feng J, Cerniglia CE, Chen H (2012) Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci Elit 4:568–586. https://doi.org/10.2741/e400

  59. Chequer FMD, Angeli JPF, Ferraz ERA, Tsuboy MS, Marcarini JC, Mantovani MS, de Oliveira DP (2009) The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat Res Genet Toxicol Environ Mutagen 676:83–86. https://doi.org/10.1016/j.mrgentox.2009.04.004

    Article  CAS  Google Scholar 

  60. Sathishkumar K, AlSalhi MS, Sanganyado E, Devanesan S, Arulprakash A, Rajasekar A (2019) Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent. J Photochem Photobiol B Biol 200:111655. https://doi.org/10.1016/j.jphotobiol.2019.111655

  61. Lee YH, Jeong JY, Jegal J, Mo JH (2008) Preparation and characterization of polymer-carbon composite membranes for the removal of the dissolved salts from dye wastewater. Dye Pigment 76:372–378. https://doi.org/10.1016/j.dyepig.2006.08.049

    Article  CAS  Google Scholar 

  62. Baghel R, Upadhyaya S, Chaurasia SP, Singh K, Kalla S (2018) Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation. J Clean Prod 199:900–915. https://doi.org/10.1016/j.jclepro.2018.07.214

    Article  CAS  Google Scholar 

  63. Khumalo NP, Nthunya LN, De Canck E, Derese S, Verliefde AR, Kuvarega AT (2019) Separation and purification technology Congo red dye removal by direct membrane distillation using PVDF/PTFE membrane. Sep Purif Technol 211:578–586. https://doi.org/10.1016/j.seppur.2018.10.039

    Article  CAS  Google Scholar 

  64. Heidari MR, Varma RS, Ahmadian M, Pourkhosravani M, Asadzadeh SN, Karimi P, Khatami M (2019) Photo-Fenton like catalyst system: activated carbon/CoFe 2 O 4 nanocomposite for reactive dye removal from textile wastewater. Appl Sci 9. https://doi.org/10.3390/app9050963

  65. Mook WT, Aroua MK, Szlachta M, Lee CS (2017) Optimisation of Reactive Black 5 dye removal by electrocoagulation process using response surface methodology. Water Sci Technol 75:952–962. https://doi.org/10.2166/wst.2016.563

    Article  CAS  Google Scholar 

  66. Chen W, Yan X (2020) Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review [J]. J Mater Sci Technol 43(0):175–188

    Google Scholar 

  67. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  Google Scholar 

  68. Silva TL, Cazetta AL, Souza PSC, Zhang T, Asefa T, Almeida VC (2018) Mesoporous activated carbon fibers synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions. J Clean Prod 171:482–490. https://doi.org/10.1016/j.jclepro.2017.10.034

    Article  CAS  Google Scholar 

  69. Mahmoodi NM, Masrouri O, Arabi AM (2014) Synthesis of porous adsorbent using microwave assisted combustion method and dye removal. J Alloys Compd 602:210–220. https://doi.org/10.1016/j.jallcom.2014.02.155

    Article  CAS  Google Scholar 

  70. Borousan F, Youse F, Ghaedi M (2019) Removal of Malachite Green Dye using IRMOF-3−MWCNT-OH−Pd-NPs as a novel adsorbent: kinetic, isotherm, and thermodynamic studies (2019). https://doi.org/10.1021/acs.jced.9b00298

  71. Liu Q, Gao Y, Zhou Y, Tian N, Liang G, Ma N, Dai W (2019) Highly improved water resistance and Congo red uptake capacity with a Zn/Cu-BTC@MC composite adsorbent. J Chem Eng Data. https://doi.org/10.1021/acs.jced.9b00159

    Article  Google Scholar 

  72. Zolgharnein J, Dermanaki Farahani S, Bagtash M, Amani S (2020) Application of a new metal-organic framework of [Ni2F2(4,4′-bipy)2(H2O)2](VO3)2.8H2O as an efficient adsorbent for removal of Congo red dye using experimental design optimization. Environ Res 182:109054. https://doi.org/10.1016/j.envres.2019.109054.

  73. Dalvand A, Gholibegloo E, Ganjali MR, Golchinpoor N, Khazaei M, Kamani H, Hosseini SS, Mahvi AH (2016) Comparison of Moringa stenopetala seed extract as a clean coagulant with Alum and Moringa stenopetala-Alum hybrid coagulant to remove direct dye from Textile Wastewater. Environ Sci Pollut Res 23:16396–16405. https://doi.org/10.1007/s11356-016-6708-z

    Article  CAS  Google Scholar 

  74. Shankar YS, Ankur K, Bhushan P (n.d.) Utilization of water treatment plant (WTP) sludge for pretreatment of dye wastewater using coagulation/Flocculation. Springer, Singapore. https://doi.org/10.1007/978-981-13-0215-2

  75. Le OTH, Tran LN, Doan VT, Van Pham Q, Van Ngo A, Nguyen HH (2020) Mucilage extracted from dragon fruit peel (Hylocereus undatus) as flocculant for treatment of dye wastewater by coagulation and flocculation process. Int J Polym Sci. https://doi.org/10.1155/2020/7468343

  76. Nataraj SK, Hosamani KM, Aminabhavi TM (2009) Nano filtration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination 249:12–17. https://doi.org/10.1016/j.desal.2009.06.008

    Article  CAS  Google Scholar 

  77. Korenak J, Hélix-Nielsen C, Bukšek H, Petrinić I (2019) Efficiency and economic feasibility of forward osmosis in textile wastewater treatment. J Clean Prod 210:1483–1495. https://doi.org/10.1016/j.jclepro.2018.11.130

    Article  CAS  Google Scholar 

  78. Moussa DT, El-Naas MH, Nasser M, Al-Marri MJ (2017) A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J Environ Manag 186:24–41. https://doi.org/10.1016/j.jenvman.2016.10.032

    Article  Google Scholar 

  79. Baroud TN, Giannelis EP (2018) High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons. Carbon NY 139:614–625. https://doi.org/10.1016/j.carbon.2018.05.053

    Article  CAS  Google Scholar 

  80. Xu X, Tan H, Wang Z, Wang C, Pan L, Kaneti YV, Yang T, Yamauchi Y (2019) Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination. Environ Sci Nano 6:981–989. https://doi.org/10.1039/c9en00017h

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maheshwari, K., Agrawal, M., Gupta, A.B. (2021). Dye Pollution in Water and Wastewater. In: Muthu, S.S., Khadir, A. (eds) Novel Materials for Dye-containing Wastewater Treatment . Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-2892-4_1

Download citation

Publish with us

Policies and ethics