Skip to main content

Advertisement

Log in

Effects of γ-Fe2O3 nanoparticles on the survival and reproduction of Biomphalaria glabrata (Say, 1818) and their elimination from this benthic aquatic snail

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effects of maghemite nanoparticles (γ-Fe2O3) coated with meso-2, 3-dimercaptosuccinic acid (DMSA) stabilizer on the survival and reproduction of the aquatic snail Biomphalaria glabrata. The cumulative means of egg masses and eggs per individual in the control group at the end of 4 weeks were 18.8 and 326.7, respectively. These values at the concentration of 1 mg/L were 17.2 and 291.6; at 10 mg/L, they were 19.6 and 334.4 ,and at 100 mg/L, they were 14.3 and 311.1. Results showed no significant differences between the tested and the control groups at the level of p < 0.05. Exposure of embryos for 10 days showed absence of mortality, malformation, or hatching delay. X-ray microtomography confirmed the presence of nanoparticles in exposed individuals and showed the complete elimination of the nanoparticles after 30 days in clean water. In the studied conditions, it is clear that γ-Fe2O3 coated with stabilizing DMSA did not alter the fecundity or the fertility of the snail B. glabrata after 4 weeks of exposure, and accumulation was not present after 30 days in clean water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009

    Article  CAS  Google Scholar 

  • Bellavere C, Gorbi J (1981) Comparative analysis of acute toxicity of chromium, copper and cadmium to Daphnia magna, Biomphalaria glabrata and Brachydanio rerio. Environ Technol Lett 2:119–128

    Article  CAS  Google Scholar 

  • Benkendorff K, Davis AR, Bremmer JB (2001) Chemical defense in the egg masses of benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 polychaetes. J Invertebr Pathol 78:109–118

    Article  CAS  Google Scholar 

  • Camey T, Verdonk NH (1968) The early development of the snail Biomphalaria glabrata (say) and the origin of the head organs. Neth J Zool 20:93–121

    Article  Google Scholar 

  • Cheng J, Flahaut E, Cheng SH (2007) Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–716

    Article  CAS  Google Scholar 

  • Dunnett CW (1955) Multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121

    Article  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    Article  Google Scholar 

  • Fauconnier N, Pons J, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–477

    Article  CAS  Google Scholar 

  • Geoprincy G, Nagendhira Ghandhi N, Renganathan S (2012) Novel antibacterial effects of alumina nanoparticles on Bacillus cereus and Bacillus subtilis in comparison with antibiotics. Int J Pharm Pharm Sci 4:544–548

    CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knoledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  • Hathaway JJ, Adema CM, Stout BA, Mobarak CD, Loker ES (2010) Identification of protein components of egg masses indicates parental investment in immunoprotection of offspring by Biomphalaria glabrata (Gastropoda, Mollusca). Dev Comp Immunol 34:425–435

    Article  CAS  Google Scholar 

  • Hu J, Wang D, Wang J, Wang J (2012) Bioaccumulation of Fe2O3 (magnetic nanoparticles) in Ceriodaphnia dubia. Environ Pollut 162:216–222

    Article  CAS  Google Scholar 

  • Jenneson PM, Luggar RD, Morton EJ, Gundogdu O, Tüzün U (2004) Examining nanoparticle assemblies using high spatial resolution x-ray microtomography. J Appl Phys 96:2889–2894

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  Google Scholar 

  • Kawano T, Okazaki K, Ré L (1992) Embryonic development of Biomphalaria glabrata (say, 1818) (Mollusca, Gastropoda, Planorbidae): a practical guide to the main stages. Malacologia 34:25–32

    Google Scholar 

  • Marxen JC, Prymak O, Beckmann F, Neues F, Epple M (2008) Embryonic shell formation in the snail Biomphalaria glabrata: a comparison between scanning electron microscopy (SEM) and synchrotron radiation microcomputer tomography (SRμCT). J Molluscan Stud 74:19–25

    Article  Google Scholar 

  • Mukherjee A, Mohammed Sadiq I, Prathna TC, Chandrasekaran N (2011) Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Badajoz, Formatex Research Center, pp. 245–251

    Google Scholar 

  • Münzinger A (1987) Biomphalaria glabrata (say), a suitable organism for a biotest. Environ Technol Lett 8:141–148

    Article  Google Scholar 

  • Musee N, Oberholster PJ, Sikhwivhilu L, Botha AM (2010) The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805). Chemosphere 81:1196–1203

    Article  CAS  Google Scholar 

  • Nations S, Wages M, Cañas JE, Maul J, Theodorakis C, Cobb GP (2011) Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83:1053–1061

    Article  CAS  Google Scholar 

  • Oliveira-Filho EC, Geraldino BR, Coelho DR, De-Carvalho RR, Paumgartten FJR (2010) Comparative toxicity of Euphorbia milii latex and synthetic molluscicides to Biomphalaria glabrata embryos. Chemosphere 80:218–227

    Article  Google Scholar 

  • Oliveira-Filho EC, Geraldino BR, Grisolia CK, Paumgartten FJR (2005) Acute toxicity of endosulfan, nonylphenol ethoxylate, and ethanol to different life stages of the freshwater snail Biomphalaria tenagophila (Orbigny, 1835). Bull Environ Contam Toxicol 75:1185–1190

    Article  CAS  Google Scholar 

  • Oliveira-Filho EC, Grisolia CK, Paumgartten FJR (2009a) Trans-generation study of the effects of nonylphenol ethoxylate on the reproduction of the snail Biomphalaria tenagophila. Ecotoxicol Environ Saf 72:458–465

    Article  CAS  Google Scholar 

  • Oliveira-Filho EC, Grisolia CK, Paumgartten FJR (2009b) Effects of endosulfan and ethanol on the reproduction of the snail Biomphalaria tenagophila: a multigeneration study. Chemosphere 75:398–404

    Article  CAS  Google Scholar 

  • Petersen EJ, Akkanen J, Kukkonen JVK, Weber WJ (2009) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43:2969–2975

    Article  CAS  Google Scholar 

  • Ravera O (1977) Effects of heavy metals (cadmium, copper, chromium and lead) on a freshwater snail: Biomphalaria glabrata Say (Gastropoda, Prosobranchia). Malacologia 16:231–236

    CAS  Google Scholar 

  • Stern ST, Mcneil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21

    Article  CAS  Google Scholar 

  • Tervonen K, Waissi G, Petersen EJ, Akkanen J, Kukkonen JV (2010) Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna. Environ Toxicol Chem 29:1072–1078

    CAS  Google Scholar 

  • USEPA (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. USEPA, Washington Available at: http://water.epa.gov/scitech/methods/cwa/wet/upload/2007_07_10_methods_wet_disk3_ctf1-6.pdf. Accessed 6 April 2015

    Google Scholar 

  • Van Ewijk G, Vroege G, Philipse A (1999) Convenient preparation methods for magnetic colloids. J Magn Magn Mater 201:31–33

    Article  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215

    Article  CAS  Google Scholar 

  • Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7:e46286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Luana Arreguy Novais received a fellowship from the CNPq/UniCEUB program. The research was supported by the Brazilian National Research Council (CNPq) grant 552113/2011-5. This paper is dedicated to the memory of Jose de Souza Filho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo C. Oliveira-Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Thomas Braunbeck

José Sousa Filho is deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira-Filho, E.C., Filho, J.S., Novais, L.A. et al. Effects of γ-Fe2O3 nanoparticles on the survival and reproduction of Biomphalaria glabrata (Say, 1818) and their elimination from this benthic aquatic snail. Environ Sci Pollut Res 23, 18362–18368 (2016). https://doi.org/10.1007/s11356-016-6998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6998-1

Keywords

Navigation