Skip to main content

Advertisement

Log in

Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The operation of modern vehicles requires the introduction of package of fuel additives to ensure the required level of operating characteristics, some of which cannot be achieved by current oil refining methods. The use of additives allows flexibility of impact on the properties of the fuel at minimal cost, increasing the efficiency and environmental safety of vehicles. Among the wide assortment of additives available on the world market, many are surfactants. It has been shown that the introduction of some surfactants into gasoline concurrently reduces losses from gasoline evaporation, improves the mixture formation during injection of gasoline into the engine and improves detergent and anticorrosive properties. The surfactant gasoline additive that provides significant improvement in the quality of gasoline used and environmental and operating characteristics of vehicles has been developed and thoroughly investigated. The results of studies confirming the efficiency of the gasoline additive application are herein presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson LG (2015) Effects of using renewable fuels on vehicle emissions. Renew Sust Energ Rev 47:162–172. doi:10.1016/j.rser.2015.03.011

    Article  CAS  Google Scholar 

  • Andre M, Joumard R, Hickman AJ, Hassel D (1994) Actual car use and operating-conditions as emission parameters—derived urban driving cycles. Sci Total Environ 147:225–233

    Article  Google Scholar 

  • Bennett J (2014) Advanced fuel additives for modern internal combustion engines. In: Folkson R (ed) Alternative fuels and advanced vehicle technologies for improved environmental performance. Towards zero carbon transportation. Woodhead Publishing Ltd, UK, pp 165–194

    Chapter  Google Scholar 

  • Boulter PG, Latham S (2009) Emissions factors 2009: Report 5—a review of the effects of fuel properties on road vehicle emissions. TRL Report PPR358, TRL Limited, Wokingham

    Google Scholar 

  • Cutnell JD, Johnson KW (2009) Physics. John Wiley & Sons Inc, Hoboken, p 375

    Google Scholar 

  • Daehn GS (2014) Sustainable design and manufacture of lightweight vehicle structures. In: Folkson R (ed) Alternative fuels and advanced vehicle technologies for improved environmental performance. Towards zero carbon transportation. Woodhead Publishing Ltd, UK, pp 433–461

    Chapter  Google Scholar 

  • Danilov AM (2012) Development and use of fuel additives during 2006–2010. Chem tech fuels oil 47(6):470–484

    Article  CAS  Google Scholar 

  • Dardiotis C, Martini G, Marotta A, Manfredi U (2013) Low-temperature cold-start gaseous emissions of late technology passenger cars. Appl Energ 111:468–478. doi:10.1016/j.apenergy.2013.04.093

    Article  CAS  Google Scholar 

  • Demirbas A, Balubaid MA, Basahel AM, Ahmad W, Sheikh MH (2015) Octane rating of gasoline and octane booster additives. Petrol Sci Technol 33(11):1190–1197. doi:10.1080/10916466.2015.1050506

    Article  CAS  Google Scholar 

  • Faiz A, Weaver CS, Walsh PM (1996) Air pollution from motor vehicles: standards and technologies for controlling emissions. The World Bank, Washington

    Book  Google Scholar 

  • French EC, Martin RL, Dougherty JA (1993) Corrosion and its inhibition in oil and gas wells. In: Raman A, Labine P (eds) Reviews on corrosion inhibitor science and technology. NACE International, Houston, pp II-1-1–II-1-25

    Google Scholar 

  • Giakoumis EG (2012) A statistical investigation of biodiesel effects on regulated exhaust emissions during transient cycles. Appl Energ 98:273–291. doi:10.1016/j.apenergy.2012.03.037

    Article  CAS  Google Scholar 

  • Gibbs L, Anderson B, Barnes K, Engeler G, Freel J, Horn J, Ingham M, Kohler D, Lesnini D, Macarthur R, Mortier M, Peyla D, Taniguchi D, Tiedemann A, Welstand S, Bernhardt D, Collini K, Farr A, Jones J, Lind J, Tom C (2009) Motor gasolines technical review (FTR-1). Chevron Corporation, USA

    Google Scholar 

  • Groysman A (2014) Corrosion in systems for storage and transportation of petroleum products and biofuels: identification, monitoring and solutions. Springer, Netherlands

    Book  Google Scholar 

  • Han J, Forman GS, Elgowainy A, Cai H, Wang M, Divita VB (2015) A comparative assessment of resource efficiency in petroleum refining. Fuel 157:292–298. doi:10.1016/j.fuel.2015.03.038

    Article  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103(30):11206–11210. doi:10.1073/pnas.0604600103

    Article  CAS  Google Scholar 

  • Hunt MW (1998) U.S. gasoline detergent additives. Colin A. Associates Inc, New-York, Houston

  • International fuel quality standards and their implications for Australian standards: Final Report (2014). Hart Energy Research & Consulting, USA

  • Isenberg G, Edinger R, Ebner J (2002) Renewable energies for climate benign fuel production—powering fuel-cell vehicles. Environ Sci Pollut R 9(2):99–104. doi:10.1007/BF02987453

    Article  Google Scholar 

  • Janna WS (2000) Engineering heat transfer, 2nd edn. CRC Press LLC, USA, p 319

    Google Scholar 

  • Kapustin VM, Chernysheva EA (2010) The development of petroleum refining and petroleum chemistry in Russia. Petrol Chem 50(4):247–254. doi:10.1134/S0965544110040018

    Article  Google Scholar 

  • Karonis D, Lois E, Stournas S, Zannikos F (1998) Correlations of exhaust emissions from a diesel engine with diesel fuel properties. Energy and Fuels 12(2):230–238. doi:10.1021/ef9700588

    Article  CAS  Google Scholar 

  • Kozak M, Nijak D, Merkisz J (2014) Predicting exhaust emission changes resulting from local improvement of city bus traffic in Poznan. WIT Trans Ecol Envir 179(2):1021–1032. doi:10.2495/SC130872

    Google Scholar 

  • Li DD (2013) Crucial technologies supporting future development of petroleum refining industry. Chinese J Catal 34(1):48–60. doi:10.1016/S1872-2067(11)60508-1

    Article  Google Scholar 

  • Lopez-Aparicio S, Hak C (2013) Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements. Sci Total Envir 452:40–49. doi:10.1016/j.scitotenv.2013.02.046

    Article  Google Scholar 

  • Lund H, Kempton W (2008) Integration of renewable energy into the transport and electricity sectors through V2G. Energ Policy 36(9):3578–3587. doi:10.1016/j.enpol.2008.06.007

    Article  Google Scholar 

  • Magaril E (2011) Improving car environmental and operational characteristics using a multifunctional fuel additive. WIT Trans Ecol Envir 147:373–384. doi:10.2495/AIR110351

    Article  CAS  Google Scholar 

  • Magaril E (2013a) Improving the efficiency and environmental safety of gasoline engine operation. WIT Trans Built Env 130:437–485. doi:10.2495/UT130341

    Article  Google Scholar 

  • Magaril E (2013b) The influence of carbonization elimination on the environmental safety and efficiency of vehicle operation. Int J Sustain Dev Plan 8(2):231–245. doi:10.2495/SDP-V8-N2-231-245

    Article  Google Scholar 

  • Magaril E (2014) The solution to strategic problems in the oil refining industry as a factor for the sustainable development of automobile transport. WIT Trans Ecol Envir 190(2):821–832. doi:10.2495/EQ140762

    Article  Google Scholar 

  • Magaril E (2015a) Carbon-free gasoline engine operation. Int J Sustain Dev Plan 10(1):100–108. doi:10.2495/SDP-V10-N1-100-108

    Article  Google Scholar 

  • Magaril E (2015b) Increasing the efficiency and environmental safety of vehicle operation through improvement of fuel quality. Int J Sustain Dev Plan 10(6):880–893. doi:10.2495/SDP-V10-N6-880-893

    Article  Google Scholar 

  • Magaril ER (2015c) Reducing gasoline loss from evaporation by the introduction of a surface-active fuel additive. WIT Trans Built Env 146:233–242. doi:10.2495/UT150181

    Article  Google Scholar 

  • Magaril E (2016) Improvement of the environmental and operational characteristics of vehicles through decreasing the motor fuel density. Environ Sci Pollut R 23(7):6793–6802. doi:10.1007/s11356-015-5920-6

  • Magaril ER, Magaril RZ (2010) Motor fuels, 2nd edn. KDU, Moscow, In Russian

    Google Scholar 

  • Mark J, Morey C (2000) Rolling smokestacks: cleaning up America’s trucks and buses. UCS, Massachusetts

    Google Scholar 

  • Miksic BA (1993) Use of vapor phase inhibitors for corrosion protection of metal products. In: Raman A, Labine P (eds) Reviews on corrosion inhibitor science and technology. NACE International, Houston, pp II-16-1–II-16-13

    Google Scholar 

  • Mintz M, Han J, Burnham A (2014) Alternative and renewable gaseous fuels to improve vehicle environmental characteristics. In: Folkson R (ed) Alternative fuels and advanced vehicle technologies for improved environmental performance. Towards zero carbon transportation. Woodhead Publishing Ltd, UK, pp 90–116

    Chapter  Google Scholar 

  • Mohammad S, Mansooreh S, Reza B (2013) A brief review of methyl tert-butyl ether (MTBE) removal from contaminated air and water. Res J Chem Environ 17(5):90–97

    CAS  Google Scholar 

  • Nikitina EA, Emel’yanov VE, Krylov IF, Fedorova AV (2006) Detergent additives to automotive gasolines. Chem Tech Fuels Oil 42(1):30–34. doi:10.1007/s10553-006-0023-1

    Article  CAS  Google Scholar 

  • Oudijk G (2010) The rise and fall of organometallic additives in automotive gasoline. Environ Forensics 11(1-2):17–49. doi:10.1080/15275920903346794

    Article  CAS  Google Scholar 

  • Pearson RJ, Turner JWG (2014) Using alternative and renewable liquid fuels to improve the environmental performance of internal combustion engines: key challenges and blending technologies. In: Folkson R (ed) Alternative fuels and advanced vehicle technologies for improved environmental performance. Towards zero carbon transportation. Woodhead Publishing Ltd, UK, pp 52–89

    Chapter  Google Scholar 

  • Polimeni A, Vitetta A (2014) Vehicle routing in urban areas: an optimal approach with cost function calibration. Transportmetrica B-Transport Dynamics 2(1):1–19. doi:10.1080/23249935.2013.826747

    Article  Google Scholar 

  • Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Pollet BG, Staffell I, Molkov V (2014) Fuel-cell (hydrogen) electric hybrid vehicles. In: Folkson R (ed) Alternative fuels and advanced vehicle technologies for improved environmental performance. Towards zero carbon transportation. Woodhead Publishing Ltd, UK, pp 685–733

    Chapter  Google Scholar 

  • Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Saber AY, Venayagamoorthy GK (2011) Plug-in vehicles and renewable energy sources for cost and emission reductions. IEEE T Ind Electron 58(4):1229–1238. doi:10.1109/TIE.2010.2047828

    Article  Google Scholar 

  • Schill WP, Gerbaulet C (2015) Power system impacts of electric vehicles in Germany: charging with coal or renewables? Appl Energ 156:185–196. doi:10.1016/j.apenergy.2015.07.012

    Article  Google Scholar 

  • Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis, 2nd edn. John Wiley & Sons Inc, Hoboken, p 285

    Google Scholar 

  • Srivastava SP, Hancsók J (2014) Fuels and fuel-additives. John Wiley & Sons Inc, Hoboken

    Book  Google Scholar 

  • Stroe C-C, Panaitescu’ VN, Ragazzi M, Rada EC, Ionescu G (2014) Some considerations on the environmental impact of highway traffic. Rev Chim 65(2):152–155

    CAS  Google Scholar 

  • Thomas CES (2009) Transportation options in a carbon-constrained world: hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles. Int J Hydrogen Energ 34(23):9279–9296. doi:10.1016/j.ijhydene.2009.09.058

    Article  Google Scholar 

  • Torregrosa-Jaime B, Bjurling F, Corberan JM, Di Sciullo F, Paya J (2015) Transient thermal model of a vehicle’s cabin validated under variable ambient conditions. Appl Therm Eng 75:45–53. doi:10.1016/j.applthermaleng.2014.05.074

    Article  Google Scholar 

  • Torretta V, Rada EC, Panaitescu V, Apostol T (2012) Some considerations on particulate generated by traffic. UPB Scientific Bulletin, Series D: Mechanical Engineering 74(4):241–248

    Google Scholar 

  • Worldwide Fuel Charter (2013) 5th edn. Belgium, Belgium

  • Yin YF, Lawphongpanich S (2006) Internalizing emission externality on road networks. Transport Res D-Tr E 11(4):292–301. doi:10.1016/j.trd.2006.05.003

    Article  Google Scholar 

  • Zannis TC, Hountalas DT, Papagiannakis RG, Levendis YA (2009) Effect of fuel chemical structure and properties on diesel engine performance and pollutant emissions: review of the results of four European research programs. SAE International journal of fuels and lubricants 1(1):384–419. doi:10.4271/2008-01-0838

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Act 211 Government of the Russian Federation, contract No. 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Magaril.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaril, E., Magaril, R. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline. Environ Sci Pollut Res 23, 17049–17057 (2016). https://doi.org/10.1007/s11356-016-6900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6900-1

Keywords

Navigation