Skip to main content
Log in

Presence of microbial and chemical source tracking markers in roof-harvested rainwater and catchment systems for the detection of fecal contamination

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microbial source tracking (MST) and chemical source tracking (CST) markers were utilized to identify fecal contamination in harvested rainwater and gutter debris samples. Throughout the sampling period, Bacteroides HF183 was detected in 57.5 % of the tank water samples and 95 % of the gutter debris samples, while adenovirus was detected in 42.5 and 52.5 % of the tank water and gutter debris samples, respectively. Human adenovirus was then detected at levels ranging from below the detection limit to 316 and 1253 genome copies/μL in the tank water and debris samples, respectively. Results for the CST markers showed that salicylic acid (average 4.62 μg/L) was the most prevalent marker (100 %) in the gutter debris samples, caffeine (average 18.0 μg/L) was the most prevalent in the tank water samples (100 %) and acetaminophen was detected sporadically throughout the study period. Bacteroides HF183 and salicylic acid (95 %) and Bacteroides HF183 and caffeine (80 %) yielded high concurrence frequencies in the gutter debris samples. In addition, the highest concurrence frequency in the tank water samples was observed for Bacteroides HF183 and caffeine (60 %). The current study thus indicates that Bacteroides HF183, salicylic acid and caffeine may potentially be applied as source tracking markers in rainwater catchment systems in order to supplement fecal indicator analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed W, Gardner T, Toze S (2011) Microbiological quality of roof-harvested rainwater and health risks: a review. J Environ Qual 40:13–21. doi:10.1128/AEM.06047-11

    Article  CAS  Google Scholar 

  • Ahmed W, Goonetilleke A, Gardner T (2010) Human and bovine adenoviruses for the detection of source-specific fecal pollution in coastal waters in Australia. Water Res 44:4662–4673. doi:10.1016/j.watres.2010.05.017

    Article  CAS  Google Scholar 

  • Ahmed W, Goonetilleke A, Powell D, Gardner T (2009) Evaluation of multiple sewage-associated Bacteroides PCR markers for sewage pollution tracking. Water Res 43:4872–4877. doi:10.1016/j.watres.2009.08.042

    Article  CAS  Google Scholar 

  • Ahmed W, Harwood V, Nguyen K, Young S, Hamilton K, Toze S (2015) Utility of Helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents. Water Res 88:613–622. doi:10.1016/j.watres.2015.10.050

    Article  Google Scholar 

  • Ahmed W, Huygens F, Goonetilleke A, Gardner T (2008) Real-time PCR detection of pathogenic microorganisms in roof-harvested rainwater in Southeast Queensland, Australia. Appl Environ Microbiol 74:5490–5496. doi:10.1128/AEM.00331-08

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  • Anderson KL, Whitlock JE, Harwood VJ (2005) Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol 71:3041–3048. doi:10.1128/AEM.71.6.3041-3048.2005

    Article  CAS  Google Scholar 

  • Balleste E, Blanch AR (2010) Persistence of Bacteroides species populations in a river as measured by molecular and culture techniques. Appl Environ Microbiol 76:7608–7616. doi:10.1128/AEM.00883-10

    Article  CAS  Google Scholar 

  • Benotti MJ, Brownawell BJ (2009) Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environ Pollut 157:994–1002. doi:10.1016/j.envpol.2008.10.009

    Article  CAS  Google Scholar 

  • Bernhard AE, Field KG (2000) A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66:4571–4574. doi:10.1128/AEM.66.10.4571-4574.2000

    Article  CAS  Google Scholar 

  • Buerge IJ, Poiger T, Müller MD, Buser H (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37:691–700. doi:10.1021/es020125z

    Article  CAS  Google Scholar 

  • Byappanahalli MN, Whitman RL, Shively DA, Sadowsky MJ, Ishii S (2006) Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. Environ Microbiol 8:504–513. doi:10.1111/j.1462-2920.2005.00916.x

    Article  CAS  Google Scholar 

  • Caldwell JM, Raley ME, Levine JF (2007) Mitochondrial multiplex real-time PCR as a source tracking method in fecal-contaminated effluents. Environ Sci Technol 41:3277–3283. doi:10.1021/es062912s

    Article  CAS  Google Scholar 

  • Chidamba L, Korsten L (2015) Antibiotic resistance in Escherichia coli isolates from roof-harvested rainwater tanks and urban pigeon faeces as the likely source of contamination. Environ Monit Assess 187:1–15. doi:10.1007/s10661-015-4636-x

    Article  CAS  Google Scholar 

  • Desmarais TR, Solo-Gabriele HM, Palmer CJ (2002) Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl Environ Microbiol 68:1165–1172. doi:10.1128/AEM.68.3.1165-1172.2002

    Article  CAS  Google Scholar 

  • Dobrowsky P, De Kwaadsteniet M, Cloete T, Khan W (2014a) Distribution of indigenous bacterial and potential pathogens associated with roof-harvested rainwater. Appl Environ Microbiol 80:2307–2316. doi:10.1128/AEM.04130-13

    Article  CAS  Google Scholar 

  • Dobrowsky PH, van Deventer A, De Kwaadsteniet M, Ndlovu T, Khan S, Cloete TE, Khan W (2014b) Prevalence of virulence genes associated with pathogenic Escherichia coli strains isolated from domestically harvested rainwater during low- and high-rainfall periods. Appl Environ Microbiol 80:1633–1638. doi:10.1128/AEM.03061-13

    Article  CAS  Google Scholar 

  • Dobrowsky PH, Mannel D, De Kwaadsteniet M, Prozesky H, Khan W, Cloete T (2014c) Quality assessment and primary uses of harvested rainwater in Kleinmond, South Africa. Water SA 40:401–406. doi:10.4314/wsa.v40i3.2

    Article  Google Scholar 

  • Dobrowsky PH, Lombard M, Cloete WJ, Saayman M, Cloete TE, Carstens M, Khan S, Khan W (2015) Efficiency of microfiltration systems for the removal of bacterial and viral contaminants from surface and rainwater. Water Air Soil Pollut 226:33. doi:10.1007/s11270-015-2317-6

    Article  Google Scholar 

  • Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41:3517–3538. doi:10.1016/j.watres.2007.06.056

    Article  CAS  Google Scholar 

  • Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69:357–371. doi:10.1128/MMBR.69.2.357-371.2005

    Article  CAS  Google Scholar 

  • Ghebremedhin B (2013) Human adenovirus: viral pathogen with increasing importance. Eur J Microbiol Immunol 1:26–33. doi:10.1556/eujmi.4.2014.1.2

    Google Scholar 

  • Glassmeyer ST, Furlong ET, Kolpin DW, Cahill JD, Zaugg SD, Werner SL, Meyer MT, Kryak DD (2005) Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ Sci Technol 39:5157–5169. doi:10.1021/es048120k

    Article  CAS  Google Scholar 

  • Gourmelon M, Caprais M, Mieszkin S, Marti R, Wery N, Jardé E, Derrien M, Jadas-Hécart A, Communal P, Jaffrezic A (2010) Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Res 44:4812–4824. doi:10.1016/j.watres.2010.07.061

    Article  CAS  Google Scholar 

  • Gwenzi W, Dunjana N, Pisa C, Tauro T, Nyamadzawo G (2015) Water quality and public health risks associated with roof rainwater harvesting systems for potable supply: review and perspectives. Sustain of Water Qual Ecol. doi:10.1016/j.swaqe.2015.01.006

    Google Scholar 

  • Hagedorn C, Weisberg SB (2009) Chemical-based fecal source tracking methods: current status and guidelines for evaluation. Rev Environ Sci Biotechnol 8:275–287. doi:10.1007/s11157-009-9162-2

    Article  CAS  Google Scholar 

  • Haramoto E, Katayama H, Oguma K, Ohgaki S (2005) Application of cation-coated filter method to detection of noroviruses, enteroviruses, adenoviruses, and torque teno viruses in the Tamagawa River in Japan. Appl Environ Microbiol 71:2403–2411. doi:10.1128/AEM.71.5.2403-2411.2005

    Article  CAS  Google Scholar 

  • Harwood VJ, Brownell M, Wang S, Lepo J, Ellender RD, Ajidahun A, Hellein KN, Kennedy E, Ye X, Flood C (2009) Validation and field testing of library-independent microbial source tracking methods in the Gulf of Mexico. Water Res 43:4812–4819. doi:10.1016/j.watres.2009.06.029

    Article  CAS  Google Scholar 

  • Harwood VJ, Levine AD, Scott TM, Chivukula V, Lukasik J, Farrah SR, Rose JB (2005) Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl Environ Microbiol 71:3163–3170. doi:10.1128/AEM.71.6.3163-3170.2005

    Article  CAS  Google Scholar 

  • Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A (2014) Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 38:1–40, doi:10.1111/1574-6976.12031

  • Heim A, Ebnet C, Harste G, Pring‐Åkerblom P (2003) Rapid and quantitative detection of human adenovirus DNA by real‐time PCR. J Med Vir 70:228–239. doi:10.1002/jmv.10382

    Article  CAS  Google Scholar 

  • Holdeman L, Moore W (1972) Anaerobic laboratory manual, 1st edn. VPI anaerobic Laboratory Blacksburg, Virginia

    Google Scholar 

  • Hundesa A, De Motes CM, Albinana-Gimenez N, Rodriguez-Manzano J, Bofill-Mas S, Sunen E, Girones RR (2009) Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment. J Virol Methods 158:130–135. doi:10.1016/j.jviromet.2009.02.006

    Article  CAS  Google Scholar 

  • Hundesa A, Maluquer de Motes C, Bofill-Mas S, Albinana-Gimenez N, Girones R (2006) Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Appl Environ Microbiol 72:7886–7893. doi:10.1128/AEM.01090-06

    Article  CAS  Google Scholar 

  • Ishii S, Ksoll WB, Hicks RE, Sadowsky MJ (2006) Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl Environ Microbiol 72:612–621. doi:10.1128/AEM.72.1.612-621.2006

    Article  CAS  Google Scholar 

  • Jones MP, Hunt WF (2010) Performance of rainwater harvesting systems in the southeastern United States. Resour Conserv Recycling 54:623–629. doi:10.1016/j.resconrec.2009.11.002

    Article  Google Scholar 

  • Jones-Lepp T (2006) Chemical markers of human waste contamination: analysis of urobilin and pharmaceuticals in source waters. J Environ Monitor 8:472–478. doi:10.1039/B512858G

    Article  CAS  Google Scholar 

  • Johnston C, Ufnar JA, Griffith JF, Gooch JA, Stewart JR (2010) A real‐time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J Appl Microbiol 109:1946–1956. doi:10.1111/j.1365-2672.2010.04824.x

  • Kildare BJ, Leutenegger CM, McSwain BS, Bambic DG, Rajal VB, Wuertz S (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res 41:3701–3715. doi:10.1016/j.watres.2007.06.037

    Article  CAS  Google Scholar 

  • Knappik M, Dance DAB, Rattanavong S, Pierret A, Ribolzi O, Davong V, Silisouk J, Vongsouvath M, Newton PN, Dittrich S (2015) Evaluation of molecular methods to improve the detection of Burkholderia pseudomallei in soil and water samples from Laos. Appl Environ Microbiol 81:3722–3727. doi:10.1128/AEM.04204-14

    Article  CAS  Google Scholar 

  • Kobayashi A, Sano D, Hatori J, Ishii S, Okabe S (2013) Chicken-and duck-associated Bacteroides–Prevotella genetic markers for detecting fecal contamination in environmental water. Appl Microbiol Biot 97:7427–7437. doi:10.1007/s00253-012-4469-2

    Article  CAS  Google Scholar 

  • Layton BA, Cao Y, Ebentier DL, Hanley K, Ballesté E, Brandão J, Byappanahalli M, Converse R, Farnleitner AH, Gentry-Shields J (2013) Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. Water Res 47:6897–6908. doi:10.1016/j.watres.2013.05.060

    Article  CAS  Google Scholar 

  • Levesque B, Pereg D, Watkinson E, Maguire J, Bissonnette L, Gingras S, Rouja P, Bergeron M, Dewailly E (2008) Assessment of microbiological quality of drinking water from household tanks in Bermuda. Can J Microbiol 54:495–500. doi:10.1139/W08-038

    Article  CAS  Google Scholar 

  • Li Z, Boyle F, Reynolds A (2010) Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 260:1–8. doi:10.1016/j.desal.2010.05.035

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Volume II: polynuclear aromatic hydrocarbons, polychlorinated dioxins, and dibenzofurans. Lewis Publishers, Boca Raton, p 597

    Google Scholar 

  • McLellan SL, Eren AM (2014) Discovering new indicators of fecal pollution. Trends Microbiol 22:697–706. doi:10.1016/j.tim.2014.08.002

    Article  CAS  Google Scholar 

  • McQuaig SM, Scott TM, Lukasik JO, Paul JH, Harwood VJ (2009) Quantification of human polyomaviruses JC Virus and BK Virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 75:3379–3388. doi:10.1128/AEM.02302-08

    Article  CAS  Google Scholar 

  • McQuaig SM, Scott TM, Harwood VJ, Farrah SR, Lukasik JO (2006) Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay. Appl Environ Microbiol 72:7567–7574. doi:10.1128/AEM.01317-06

    Article  CAS  Google Scholar 

  • Meays CL, Broersma K, Nordin R, Mazumder A (2004) Source tracking fecal bacteria in water: a critical review of current methods. J Environ Manage 73:71–79. doi:10.1016/j.jenvman.2004.06.001

    Article  Google Scholar 

  • Muscillo M, Pourshaban M, Iaconelli M, Fontana S, Di Grazia A, Manzara S, Fadda G, Santangelo R, La Rosa G (2008) Detection and quantification of human adenoviruses in surface waters by nested PCR, TaqMan real-time PCR and cell culture assays. Water Air Soil Pollut 191:83–93. doi:10.1007/s11270-007-9608-5

    Article  CAS  Google Scholar 

  • Mwenge Kahinda J, Taigbenu AE, Boroto JR (2007) Domestic rainwater harvesting to improve water supply in rural South Africa. Phys Chem 32:1050–1057. doi:10.1016/j.pce.2007.07.007

    Google Scholar 

  • Mwenge Kahinda J, Taigbenu AE, Boroto RJ (2010) Domestic rainwater harvesting as an adaptation measure to climate change in South Africa. Phys Chem Earth 35:742–751. doi:10.1016/j.pce.2010.07.004

    Article  Google Scholar 

  • Nakada N, Kiri K, Shinohara H, Harada A, Kuroda K, Takizawa S, Takada H (2008) Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environ Sci Technol 42:6347–6353. doi:10.1021/es7030856

    Article  CAS  Google Scholar 

  • Newton RJ, Vandewalle JL, Borchardt MA, Gorelick MH, McLellan SL (2011) Lachnospiraceae and Bacteroidales alternative fecal indicators reveal chronic human sewage contamination in an urban harbor. Appl Environ Microbiol 77:6972–6981. doi:10.1128/AEM.05480-11

    Article  CAS  Google Scholar 

  • Noble RT, Allen SM, Blackwood AD, Chu W, Jiang SC, Lovelace GL, Sobsey MD, Stewart JR, Wait DA (2003) Use of viral pathogens and indicators to differentiate between human and non-human fecal contamination in a microbial source tracking comparison study. J Water Health 1:195–207

    Google Scholar 

  • Olapade OA, Depas MM, Jensen ET, McLellan SL (2006) Microbial communities and fecal indicator bacteria associated with Cladophora mats on beach sites along Lake Michigan shores. Appl Environ Microbiol 72:1932–1938. doi:10.1128/AEM.72.3.1932-1938.2006

    Article  CAS  Google Scholar 

  • Phillips MC, Solo-Gabriele HM, Piggot AM, Klaus JS, Zhang Y (2011) Relationships between sand and water quality at recreational beaches. Water Res 45:6763–6769. doi:10.1016/j.watres.2011.10.028

    Article  CAS  Google Scholar 

  • Puig M, Jofre J, Lucena F, Allard A, Wadell G, Girones R (1994) Detection of adenoviruses and enteroviruses in polluted waters by nested PCR amplification. Appl Environ Microbiol 60:2963–2970

    CAS  Google Scholar 

  • Rohayem J, Berger S, Juretzek T, Herchenröder O, Mogel M, Poppe M, Henker J, Rethwilm A (2004) A simple and rapid single-step multiplex RT-PCR to detect norovirus, astrovirus and adenovirus in clinical stool samples. J Virol Methods 118:49–59. doi:10.1016/j.jviromet.2004.01.016

    Article  CAS  Google Scholar 

  • Roig B (2010) Pharmaceuticals in the environment: current knowledge and need assessment to reduce presence and impact. IWA publishing 9. doi: 10.2166/9781780401430

  • Saayman MJ, Tobin M, Khan W, Khan S (2012) The establishment of a routine monitoring technique for detecting the most prevalent pathogenic viruses in river water, Western Cape, South Africa. Dissertation or Thesis, Cape Peninsula University of Technology. http://hdl.handle.net/11189/1032

  • Sauer EP, VandeWalle JL, Bootsma MJ, McLellan SL (2011) Detection of the human specific Bacteroides genetic marker provides evidence of widespread sewage contamination of storm water in the urban environment. Water Res 45:4081–4091. doi:10.1016/j.watres.2011.04.049

    Article  CAS  Google Scholar 

  • Scheurer M, Storck FR, Graf C, Brauch H, Ruck W, Lev O, Lange FT (2011) Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil aquifer treatment. J Environ Monitor 13:966–973. doi:10.1039/C0EM00701C

    Article  CAS  Google Scholar 

  • Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J (2002) Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68:5796–5803. doi:10.1128/AEM.68.12.5796-5803.2002

    Article  CAS  Google Scholar 

  • Sercu B, Van De Werfhorst LC, Murray JL, Holden PA (2011) Terrestrial sources homogenize bacterial water quality during rainfall in two urbanized watersheds in Santa Barbara, CA. Microbial Ecol 62:574–583. doi:10.1007/s00248-011-9874-z

    Article  Google Scholar 

  • Seurinck S, Defoirdt T, Verstraete W, Siciliano SD (2005) Detection and quantification of the human‐specific HF183 Bacteroides 16S rRNA genetic marker with real‐time PCR for assessment of human fecal pollution in freshwater. Environ Microbiol 7:249–259. doi:10.1111/j.1462-2920.2004.00702.x

    Article  CAS  Google Scholar 

  • Sidhu J, Hodgers L, Ahmed W, Chong M, Toze S (2012) Prevalence of human pathogens and indicators in storm water run-off in Brisbane, Australia. Water Res 46:6652–6660. doi:10.1016/j.watres.2012.03.012

    Article  CAS  Google Scholar 

  • Sidhu JPS, Ahmed W, Gernjak W, Aryal R, McCarthy D, Palmer A, Kolotelo P, Toze S (2013) Sewage pollution in urban storm water run-off as evident from the widespread presence of multiple microbial and chemical source tracking markers. Sci Total Environ 488:463–464. doi:10.1016/j.scitotenv.2013.06.020

    Google Scholar 

  • Simmons G, Jury S, Thornley C, Harte D, Mohiuddin J, Taylor M (2008) A legionnaires’ disease outbreak: a water blaster and roof-collected rainwater systems. Water Res 42:1449–1458. doi:10.1016/j.watres.2007.10.016

    Article  CAS  Google Scholar 

  • Steffen J, Jensen M, Pomeroy CA, Burian SJ (2013) Water supply and stormwater management benefits of residential rainwater harvesting in US cities. JAWRA J Am Water Resour Assoc 49:810–824. doi:10.1111/jawr.12038

    Article  Google Scholar 

  • Ufnar J, Wang SY, Christiansen J, Yampara‐Iquise H, Carson C, Ellender R (2006) Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101:44–52. doi:10.1111/j.1365-2672.2006.02989.x

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (2007) Method 1694: Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS 1-72

  • Vantarakis A, Papapetropoulou M (1999) Detection of enteroviruses, adenoviruses and hepatitis A viruses in raw sewage and treated effluents by nested-PCR. Water Air Soil Pollut 114:85–93. doi:10.1023/A:1005065326395

    Article  CAS  Google Scholar 

  • Villemur R, Imbeau M, Vuong MN, Masson L, Payment P (2015) An environmental survey of surface waters using mitochondrial DNA from human, bovine and porcine origin as fecal source tracking markers. Water Res 69:143–153. doi:10.1016/j.watres.2014.10.063

    Article  CAS  Google Scholar 

  • Wheeler Alm E, Burke J, Spain A (2003) Fecal indicator bacteria are abundant in wet sand at freshwater beaches. Water Res 37:3978–3982. doi:10.1016/S0043-1354(03)00301-4

    Article  CAS  Google Scholar 

  • Whitman RL, Shively DA, Pawlik H, Nevers MB, Byappanahalli MN (2003) Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl Environ Microbiol 69:4714–4719. doi:10.1128/AEM.69.8.4714-4719.2003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following individuals and institutions for their contribution to this project:

• The financial assistance of the National Research Foundation (NRF) (Grant Number: 90320) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily be attributed to the NRF.

The South African Weather Services for providing the rainfall and ambient temperature data for the sampling period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Khan.

Ethics declarations

Authors’ contributions

WK conceived and designed the experiments. MW performed the experiments. MW, SK, and WK analyzed the data. SK and WK contributed reagents/materials/analysis tools. MW, TN, PHD, and WK wrote the paper. TN and PHD co-supervised protocols in the laboratory.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waso, M., Ndlovu, T., Dobrowsky, P.H. et al. Presence of microbial and chemical source tracking markers in roof-harvested rainwater and catchment systems for the detection of fecal contamination. Environ Sci Pollut Res 23, 16987–17001 (2016). https://doi.org/10.1007/s11356-016-6895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6895-7

Keywords

Navigation