Skip to main content
Log in

Development and application of three-dimensional potential source contribution function (3D-PSCF)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A potential source contribution function (PSCF) can indicate the source areas of high air pollutant concentrations using backward trajectories. However, the conventional two-dimensional PSCF (2D-PSCF) cannot consider the emission and transport height of air pollutants. That missing information might be critical because injection height varies depending on the source type, such as with biomass burning. We developed a simple algorithm to account for the height of trajectories with high concentrations and combined it with the conventional PSCF to devise 3D-PSCF. We demonstrate the applicability of the 3D-PSCF by applying it to particulate PAH data collected from September 2006 to August 2007 in Seoul. We found variation in the results from 3D-PSCF with threshold heights from 3,000 to 1,500 m. Applying 2,000 m as the threshold height in the PSCF calculation most clearly determined the possible source areas of air pollutants from biomass fuel burning that were affecting the air quality in Seoul.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashbaugh LL, Malm WC, Sadeh WZ (1985) A residence time probability analysis of sulfur concentrations at grand canyon national park. Atmos Environ 19:1263–1270

    Article  CAS  Google Scholar 

  • Cheng, M. D., Hopke, P. K., Zeng Y. (1993a) A receptor-oriented methodology for determining source regions of particle sulfate composition observed at Dorset, Ontario. J Geophys Res, 98, 16839-16849

  • Cheng, M. D., Hopke, P. K., Barrie, L., Rippe, A., Olson, M., Landsberger S. (1993b) Qualitative determination of source regions of aerosol in Canadian high Arctic. Environ Sci Technol, 27, 2063-2071

  • Cheng MD, Gao N, Hopke PK (1996) Source apportionment study of nitrogen species measured in Southern California in 1987. J Environ Eng 122:183–190

    Article  CAS  Google Scholar 

  • China NBS, China National Bureau of Statistics (2010) China Energy Statistical Yearbook 2009

    Google Scholar 

  • Choi H, Zhang YH, Kim KH (2008) Sudden high concentration of TSP affected by atmospheric boundary layer in Seoul metropolitan area during duststorm period. Environ Int 34:635–647

    Article  CAS  Google Scholar 

  • Fan A, Hopke PK, Raunemaa RM, Öblad M, Pacyna JM (1995) A study on the potential sources of air pollutants observed at Tjörn, Sweden. Environ Sci Pollut Res 2(2):107–115

    Article  CAS  Google Scholar 

  • Freitas SR, Longo KM, Chatfield R, Latham D, Silva Dias MAF, Andreae MO, Prins E, Santos JC, Gielow R, Carvalho JA Jr (2007) Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos Chem Phys 7:3385–3398

    Article  CAS  Google Scholar 

  • Gao N, Cheng MD, Hopke PK (1993) Potential source contribution function analysis and source apportionment of sulfur species measured at Rubidoux, CA during the southern California air quality study, 1987. Anal Chim Acta 277:369–380

    Article  CAS  Google Scholar 

  • Gao N, Cheng MD, Hopke PK (1994) Receptor modeling of airborne ionic species collected in SCAQS, 1987. Atmos Environ 28:1447–1470

    Article  CAS  Google Scholar 

  • Gao N, Hopke PK, Reid NW (1996) Possible sources of some trace elements found in airborne particles and precipitation in Dorset, Ontario. J Air Waste Manag Assoc 46:1035–1047

    Article  CAS  Google Scholar 

  • Heo JB, Hopke PK, Yi SM (2009) Source apportionment of PM2.5 in Seoul, Korea. Atmos Chem Physics 9:4957–4971

    Article  CAS  Google Scholar 

  • Hopke PK, Gao N, Cheng MD (1993) Combining chemical and meteorological data to infer source areas of airborne pollutants. Chemometrics Intelligent Lab Syst 19(2):187–199

    Article  CAS  Google Scholar 

  • Hopke PK, Barrie LA, Li S-M, Cheng M-D, Li C, Xie Y (1995) Possible sources and preferred pathways for biogenic and non-sea-salt sulfur for the high Arctic. J Geophys Res 100:16595–16603

    Article  CAS  Google Scholar 

  • IEA, International Energy Agency (1999) Coal in the energy supply of China- Report of the CIAB Asia Committee, Coal Industry Advisory Board, IEA

    Google Scholar 

  • In HJ, Kim YP (2010) Estimation of the aerosol optical thickness distribution in the Northeast Asian forest fire episode in May 2003: possible missing emissions. Atmos Res 98:261–273

    Article  Google Scholar 

  • Jian Y, Fu TM (2014) Injection heights of springtime biomass-burning plumes over peninsular Southeast Asia and their impacts on long-range pollutant transport. Atmos Chem Phys 14:3977–3989

    Article  CAS  Google Scholar 

  • Jung DB, Cho YS, Kim IS, Lee JY, Kim YP (2015) Impact of energy consumption in Northeast Asia to the particulate PAHs levels and composition at Seoul. Aerosol Air Qual Res 15(6):2190–2199

    CAS  Google Scholar 

  • Kim SW, Yoon SC, Won JG, Choi SC (2007) Ground-based remote sensing measurements of aerosol and ozone in an urban area: a case study of mixing height evolution and its effect on ground-level ozone concentrations. Atmos Environ 41:7069–7081

    Article  CAS  Google Scholar 

  • Kim IS, Lee JY, Kim YP (2013) Impact of polycyclic aromatic hydrocarbon (PAH) emissions from North Korea to the air quality in the Seoul Metropolitan Area, South Korea. Atmos Environ 70:159–165

    Article  CAS  Google Scholar 

  • Labonne M, Bréon F, Chevallier F (2007) Injection height of biomass burning aerosols as seen from a spaceborne lidar. Geophsical Res Lett 34:L11806. doi:10.1029/2007GL029311

    Article  Google Scholar 

  • Lee JY, Kim YP (2007) Source apportionment of the particulate PAHs in Seoul, Korea: impact of long range transport to a megacity. Atmos Chem Phys 7:3587–3596

    Article  CAS  Google Scholar 

  • Lee JY, Kim YP, Kang CH (2011) Characteristics of the ambient particulate PAHs in Seoul, a mega city of Northeast Asia in comparison with the characteristics of a background site. Atmos Res 99:50–56

    Article  CAS  Google Scholar 

  • Li A, Jang JK, Scheff PA (2003) Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environ Sci Technol 37:2958–2965

  • Nguyen DL, Kim JY, Ghim YS, Shim SG (2015) Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period. Environ Sci Pollut Res 22(5):3594–3605

    Article  CAS  Google Scholar 

  • Malm WC, Johnson CE, Bresch JF (1986) Application of principal component analysis for purposes of identifying source-receptor relationships. In: Pace TG (ed) receptor methods for source apportionment. Air Pollution Control Association, Pittsburgh, PA, pp 127–148

    Google Scholar 

  • Marr LC, Dzepina K, Jimenez JL, Reisen F, Bethel HL, Arey J, Gaffney JS, Marley NA, Molina LT, Molina MJ (2006) Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmos Chem Phys 6:1733–1745

    Article  CAS  Google Scholar 

  • Martin MV, Logan JA, Kahn RA, Leung FY, Nelson DL, Diner DJ (2010) Smoke injection heights from fires in North America: analysis of 5 years of satellite observations. Atmos Chem Phys 10:1491–1510

    Article  Google Scholar 

  • Mazzoni D, Logan JA, Diner D, Kahn R, Tong L, Li Q (2007) A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sens Environ 107:138–148

    Article  Google Scholar 

  • Ravindra K, Sokhia R, Griekenb RV (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42(13):2895–2921

    Article  CAS  Google Scholar 

  • Rogge WF, Hidlemann LM, Mazurek MA, Cass GR, Simoneit BRT, (1993a) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environ Sci Tech 27:636–651

  • Rogge WF, Hidlemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993b) Sources of fine organic aerosol. 5. Natural gas home appliances. Environ Sci Tech 27:2736–2744

  • Rogge WF, Hidlemann LM, Mazurek MA, Cass GR (1998) Sources of fine organic aerosol. 9. Pine, oak, and synthetic log combustion in residential fireplaces. Environ Sci Tech 32:13–22

  • Stohl A (1998) Computation, accuracy and applications of trajectories—a review and bibliography. Atmos Environ 32(6):947–966

    Article  CAS  Google Scholar 

  • Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo J-H, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21):8809

    Article  Google Scholar 

  • Streets DG, Yarber KF (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cycles 17(4):1099. doi:10.1029/2003GB002040

    Article  Google Scholar 

  • Tian YZ, Shi GL, Han B, Wua JH, Zhou XY, Zhou LD, Zhang P, Feng YC (2015) Using an improved Source Directional Apportionment method to quantify the PM2.5 source contributions from various directions in a megacity in China. Chemosphere 119:750–756

    Article  CAS  Google Scholar 

  • Tian YZ, Chen G, Wang HT, Huang-Fu YQ, Shi GL, Han B, Feng YC (2016) Source regional contributions to PM2.5 in a megacity in China using an advanced source regional apportionment method. Chemosphere 147:256–263

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) (2012) Democratic People’s Republic of KOREA - Environment and Climate Change Outlook, Pyongyang 2012, ISBN: 978-9946-1-0170-5

  • Venturini E, Vassura I, Raffo S, Ferroni L, Bernardi E, Passarini F (2014) Source apportionment and location by selective wind sampling and Positive Matrix Factorization. Environ Sci Pollut Res 21(20):11634–11648

    Article  CAS  Google Scholar 

  • Wallace, J. M. and P. V. Hobbs (2006) Atmospheric science: an introductory survey, Academic Press, ISBN: 9780127329512

  • Wang YQ, Zhang XY, Arimoto R, Cao JJ, Shen ZX (2004) The transport pathways and sources of PM10 pollution in Beijing during spring 2001, 2002 and 2003. Geophys Res Lett 31:L14110

    Article  Google Scholar 

  • Wang YQ, Zhang XY, Arimoto R (2006) The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring. Sci Total Environ 368:875–883

    Article  CAS  Google Scholar 

  • Zeng Y, Hopke PK (1989) A study on the sources of acid precipitation in Ontario, Canada. Atmos Environ 23:1499–1509

    Article  CAS  Google Scholar 

  • Zhang Y, Tao S (2008) Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China. Environ Pollut 156:657–663

    Article  CAS  Google Scholar 

  • Zhang YF, Xu H, Tian YZ, Shi GL, Zeng F, Wu JH, Zhang XY, Li X, Zhu T, Feng YC (2011) The study on vertical variability of PM10 and the possible sources on a 220 m tower, in Tianjin, China. Atmos Environ 45:6133–6140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT and Future Planning, Korea (NRF-2014R1A2A2A05007038) and the Ministry of Education, Science and Technology, Korea (NRF-2011-0021504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehyun Wee.

Additional information

Responsible editor: Marcus Schulz

Highlights

Injection height of air pollutants cannot be considered in the conventional PSCF

Injection heights differ depending on source types, such as with biomass burning

The proposed 3D-PSCF accounts for the height of trajectories

Possible source areas for biomass burning were more clearly determined using 3D-PSCF

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I.S., Wee, D., Kim, Y.P. et al. Development and application of three-dimensional potential source contribution function (3D-PSCF). Environ Sci Pollut Res 23, 16946–16954 (2016). https://doi.org/10.1007/s11356-016-6787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6787-x

Keywords

Navigation