Skip to main content
Log in

DGT induced fluxes in sediments model for the simulation of phosphorus process and the assessment of phosphorus release risk

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Diffusive gradients in thin films (DGT)-induced flux in sediments (DIFS) (DGT-DIFS) model for phosphorus (P) has been investigated to provide a numerical simulation of a dynamic system of the DGT–pore water–sediment in Dianchi Lake (China). Kinetic parameter—T C (33–56,060 s), distribution coefficient—K d (134.7–1536 cm3g−1), and resupply parameter—R (0.189–0.743) are derived by DGT measurement, the sediment/pore water test, and the DIFS model. The changes of dissolved concentration in DGT diffusive layer and pore water and sorbed concentration in sediment, as well as the ratio of C DGT and the initial concentration in pore water (R) and mass accumulated by DGT resin (M) at the DGT–pore water–sediment interface (distance) of nine sampling sites during DGT deployment time (t) are derived through the DIFS simulation. Based on parameter and curves derived by the DIFS model, the P release-transfer character and mechanism in sediment microzone were revealed. Moreover, the DGT-DIFS parameters (R, T C , K −1 , C DGT ), sediment P pool, sediment properties (Al and Ca), and soluble reactive P (SRP) in overlying water can be used to assess “P eutrophication level” at different sampling sites with different types of “external P loading.” The DGT-DIFS model is a reliable tool to reveal the dynamic P release in sediment microzone and assess “internal P loading” in the plateau lake Dianchi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Appan A, Wang H (2000) Sorption isotherms and kinetics of sediment phosphorus in a tropical reservoir. J Environ Eng 126:993–998

    Article  CAS  Google Scholar 

  • Böstrom B, Pettersson K (1982) Different patterns of phosphorus release from lake-sediments in laboratory experiments. Hydrobiologia 91–2:415–429

    Article  Google Scholar 

  • Chinese Research Academy of Environmental Sciences (2014) The survey and the investigation of “internal loading character” of Dianchi Lake, unpublished

  • Christophoridis C, Fytianos K (2006) Conditions affecting the release of phosphorus from surface lake sediments. J Environ Qual 35(4):1181–1192

    Article  CAS  Google Scholar 

  • Conley DJ, Smith WM, Cornwell JC, Fisher TR (1995) Transformation of particle-bound phosphorus at the land sea interface. Estuar Coast Shelf Sci 40:161–176

    Article  CAS  Google Scholar 

  • Cook PLM, Holland DP, Longmore AR (2010) Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon. Limnol Oceanogr 55:1123–1133

    Article  CAS  Google Scholar 

  • Davison W, Zhang H, Grime G (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:546–548

    Article  CAS  Google Scholar 

  • Dong LM, Yang ZF, Liu XH (2011) Phosphorus fractions, sorption characteristics, and its release in the sediments of Baiyangdian Lake, China. Environ Monit Assess 179:335–345

    Article  CAS  Google Scholar 

  • Einsele W (1936) Uber die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im Eutrophen See. Arch Hydrobiol 29:664–686

    CAS  Google Scholar 

  • Ernstberger H, Davison W, Zhang H, Tye A, Young S (2002) Measurement and dynamic modelling of trace metal mobilization in soils using DGT and DIFS. Environ Sci Technol 36:349–354

    Article  CAS  Google Scholar 

  • Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol Oceanogr 33:649–668

    Article  CAS  Google Scholar 

  • Froelich PN, Bender ML, Luedtke NA, Heath GR, DeVries T (1982) The marine phosphorus cycle. Am J Sci 282:474–511

    Article  CAS  Google Scholar 

  • Hamilton-Taylor, Morris JEB (1985) The dynamics of iron and manganese in surface sediments of a seasonally anoxic lake. Arch Hydrobiol Suppl 72:135–165

    CAS  Google Scholar 

  • Harper MP, Davison W, Tych W, Zhang H (1998) Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochim Cosmochim Acta 62:2757–2770

    Article  CAS  Google Scholar 

  • Harper MP, Davison W, Tych W (2000) DIFS-a modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils. Environ Model Softw 15:55–66

    Article  Google Scholar 

  • Hieltjes AHM, Lijklema L (1980) Fractionation of inorganic phosphates in calcareous sediments. J Environ Qual 9:405–407

    Article  CAS  Google Scholar 

  • Kopáček J, Borovec J, Hejzlar J, Ulrich KU, Norton ST, Amirbahman A (2005) Aluminum control of phosphorus sorption by lake sediments. Environ Sci Technol 39:8784–8789

    Article  Google Scholar 

  • Lebo ME (1991) Particle-bound phosphorus along an urbanized coastal plain estuary. Mar Chem 34:225–246

    Article  CAS  Google Scholar 

  • Li XD, Barry JC, Michael HR, Iain T (1995) Sequential extraction of soils for multielement analysis by ICP-AES. Chem Geol 124:109–123

    Article  CAS  Google Scholar 

  • Li MD, Yang ZF, Liu XH (2011) Phosphorus fractions, sorption characteristics, and its release in the sediments of Baiyangdian Lake, China. Environ Monit Assess 179:335–345

    Article  Google Scholar 

  • Lijklema L (1977) The role of iron in the exchange of phosphate between water and sediments. In: Golterman HL (eds) Interactions between sediments and fresh water, pp 313–317

  • Lin CY, Wang ZG, He MC, Li YX, Liu RM, Yang ZF (2009) Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China. J Hazard Mater 170:278–285

    Article  CAS  Google Scholar 

  • Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E (2009) Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7:373–384

    Article  CAS  Google Scholar 

  • Monbet P, Mckelvie ID, Worsfold PJ (2008) Combined gel probes for the in situ determination of dissolved reactive phosphorus in porewaters and characterization of sediment reactivity. Environ Sci Technol 42:5112–5117

    Article  CAS  Google Scholar 

  • Mortimer CH (1941) The exchange of dissolved substances between mud and water in lakes. J Ecol 29:280–329

    Article  CAS  Google Scholar 

  • Palmer-Felgate EJ, Mortimer RJG, Krom MD, Jarvie HP, Williams JR, Spraggs E, Stratford CJ (2011) Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash. Sci Total Environ 409:2222–2232

    Article  CAS  Google Scholar 

  • Paludan C, Morris JT (1999) Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry 45:197–221

    Google Scholar 

  • Pettersson K (1998) Mechanisms for internal loading of phosphorus in lakes. Hydrobiologia 373(374):21–25

    Article  Google Scholar 

  • Psenner R, Pucsko R (1988) Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch Hydrobiol Beih Ergebn Limnol 30:43–59

    CAS  Google Scholar 

  • SEPA (State Environmental Protection Administration of China) (2002) Monitor and analysis method of water and wastewater. Chinese Environmental Science, Beijing

    Google Scholar 

  • Shilla DA, Asaeda T, Kalibbala MM (2009) Phosphorus speciation in Myall Lake sediment, NSW, Australia. Wetl Ecol Manag 17:85–91

    Article  CAS  Google Scholar 

  • Slomp CP, Malschaert JFP, Van Rassphorst W (1998) The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments. Limnol Oceanogr 43:532–846

    Article  Google Scholar 

  • Smith L G (2009) Missiquoi bay sediment phosphorus cycling: the role of organic phosphorus and seasonal redox fluctuations. Master Thesis, The University of Vermont, Vermont, USA

  • Sundby B, Anderson LG, Hall POJ, Iverfeldt A, Vanderloeff MMR, Westerlund SFG (1986) The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim Cosmochim Acta 50(6):1281–1288

    Article  CAS  Google Scholar 

  • User’s guide to DGT technique, DGT Research Ltd. (2013) http://www.dgtresearch.com

  • Wang S, Jin XC, Zhao HC, Wu FC (2009) Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions. J Hazard Mater 161:1551–1559

    Article  CAS  Google Scholar 

  • Wilson TA, Norton SA, Lake BA, Amirbahman A (2008) Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes. Sci Total Environ 404:269–275

    Article  CAS  Google Scholar 

  • Wu ZH, Wang SR, Jiao LX, Wu FC (2014) The simultaneous measurement of phosphorus, sulfide and trace metals by ferrihydrite/AgI/chelex-100 DGT (diffusive gradients in thin films) probe at sediment/water interface (SWI) and remobilization assessment. Water Air Soil Pollut 225:2188–2204

    Article  Google Scholar 

  • Zhang JA, Huang XL (2007) Relative importance of solid-phase phosphorus and iron on the sorption behavior of sediments. Environ Sci Technol 41:2789–2795

    Article  CAS  Google Scholar 

  • Zhang H, Davison W, Miller S, Tych W (1995) In situ high-resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT. Geochim Cosmochim Acta 59:4181–4192

    Article  CAS  Google Scholar 

  • Zhang H, Davison W, Gadi R, Kobayashi T (1998) In situ measurement of dissolved phosphorus in natural waters using DGT. Anal Chim Acta 370:29–38

    Article  CAS  Google Scholar 

  • Zhang H, Davison W, Mortimer RJG, Krom MD, Hayes PJ, Davies IM (2002) Localised remobilization of metals in a marine sediment. Sci Total Environ 296:175–187

    Article  CAS  Google Scholar 

  • Zwolsman JJG (1994) Seasonal variability and biogeochemistry of phosphorus in the Scheldt Estuary, southwest Netherlands. Estuar Coast Shelf Sci 39:227–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (No. U1202235), the National Critical Patented Project for Water Pollution Control and Management (2012ZX07102-004), and the China Postdoctoral Science Foundation (2013 M541002). The authors are grateful to Hao Zhang for their preparation of the DGT products. The authors also thank Wenbin Liu, Yayuan Meng, and Yuanzhi Xu for their assistance of sediment collection and processing. The authors also thank the Institute of Geophysical and Geochemical Exploration of China for the HR-ICP-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengrui Wang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 296 kb)

Fig. S2

(DOCX 37 kb)

Fig. S3

(DOCX 21 kb)

Fig. S4

(DOCX 20 kb)

Fig. S5

(DOCX 27 kb)

Fig. S6

(DOCX 1133 kb)

Fig. S7

(DOCX 1827 kb)

Table S1

(DOCX 13 kb)

Table S2

(DOCX 17 kb)

Table S3

(DOCX 13 kb)

ESM 11

(DOCX 13 kb)

ESM 12

(DOCX 15 kb)

ESM 13

(DOCX 18 kb)

ESM 14

(DOCX 19 kb)

ESM 15

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wang, S., Zhang, L. et al. DGT induced fluxes in sediments model for the simulation of phosphorus process and the assessment of phosphorus release risk. Environ Sci Pollut Res 23, 14608–14620 (2016). https://doi.org/10.1007/s11356-016-6651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6651-z

Keywords

Navigation