Skip to main content
Log in

Geochemistry and environmental threats of soils surrounding an abandoned mercury mine

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The closure of mercury mining areas is generally associated with a release of Hg and other metals into the environment due to the abandonment of mining wastes. Because of their potential toxic properties, the mobilization of particulate and soluble metal species is of major concern. In the present study, the environmental risks posed by soils surrounding an abandoned mercury mining area in Valle del Azogue (Almeria, Spain) are assessed through the determination of physical-chemical parameters, the quantification of metal concentrations, and the application of aquatic and terrestrial ecotoxicity bioassays. Chemical analysis of soil samples revealed concentrations of Hg, As, Ba, Pb, Sb, and Zn above international intervention values. Results from terrestrial tests showed detrimental effects in all studied organisms (Eisenia foetida, Folsomia candida, and different plant species) and revealed the avoidance response of earthworms as the most sensitive endpoint. Surprisingly, the most toxic samples were not the ones with higher metal contents but the ones presenting higher electrical conductivity. Aquatic ecotoxicity tests with Vibrio fischeri, Raphidocelis subcapitata, Daphnia magna, and Danio rerio were in accordance with terrestrial tests, confirming the need to couple environmental chemistry with ecotoxicological tools for the proper assessment of metal-contaminated sites. In view of the results, a remediative intervention of the studied area is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edition. Springer-Verlag. 866 pp

  • Agnieszka B, Tomasz C, Jerzy W (2014) Chemical toxicity of soils contaminated by mining activity. Ecotoxicology 23:1234–1244

    Article  CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of tests to assess the quality of mine-contaminated soils. Environ Geochem Health 30:95–99

    Article  CAS  Google Scholar 

  • Alvarenga P, Palma P, de Varennes A, Cunha-Queda AC (2012) A contribution towards the risk assessment of soils from Sao Dominos Mine (Portugal): Chemical, microbial and ecotoxicological indicators. Environ Pollut 161:50–56

    Article  CAS  Google Scholar 

  • Alvarenga P, Laneiro C, Palma P, de Varennes A, Cunha-Queda C (2013) A study on As, Cu, Pb, and Zn (bio)availability in an abandoned mine area (Sao Domingos, Portugal) using chemical and ecotoxicological tools. Environ Sci Pollut Res 20:6539–6550

    Article  CAS  Google Scholar 

  • ASTM (1988) Standard Guide for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians. E729-88a. American Society for Testing and Materials, Philadelphia, 20 pp

    Google Scholar 

  • Becker GF (1888) Geology of the Quicksilver deposits of the Pacific Slope with an Atlas. US Geological Survey Library, Document 23442, Spanish localities: 27–32

  • Bes CM, Pardo T, Bernal MP, Clemente R (2014) Assessment of the environmental risks associated with two mine tailing soils from the La Unión-Cartagena (Spain) mining district. J Geochem Explor 147:98–106

    Article  CAS  Google Scholar 

  • Biester H, Scholz C (1997) Determination of mercury phases in contaminated soils—Hg-pyrolysis versus sequential extractions. Environ Sci Technol 31:233–239

    Article  CAS  Google Scholar 

  • Biester H, Gosar M, Covelli S (2000) Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija Mercury Mine, Slovenia. Environ Sci Technol 34:3330–3336

    Article  CAS  Google Scholar 

  • Bori J, Riva MC (2015) An alternative approach to assess the habitat selection of Folsomia candida in contaminated soils. Bull Environ Contam Toxicol 95(5):670–674

    Article  CAS  Google Scholar 

  • Bori J, Ribalta C, Domene X, Riva MC, Ribó JM (2015) Environmental effects of an imidacloprid-containing formulation: from soils to waters. AFINIDAD 571(72):169–176

    Google Scholar 

  • British Standard EN 12457–2 (2002) Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). British Standards Institutions

  • Carmona DM, Faz Cano A, Arocena JM (2009) Cadmium, copper, lead, and zinc in secondary sulfate minerals in soils of mined areas in Southeast Spain. Geoderma 150:150–157

    Article  CAS  Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Sci Total Environ 366:1–11

    Article  CAS  Google Scholar 

  • Cortazar D (1875) Reseña física y geológica de la región Norte de la provincia de Almería.- Bol. de la Comisión del Mapa Geol. España 2:164–234

    Google Scholar 

  • Davies NA, Hodson ME, Black S (2003) Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environ Pollut 121:49–54

    Article  CAS  Google Scholar 

  • de Paiva Magalhães D, da Costa Marques MR, Fernandes Baptista D, Forsin Buss D (2014) Selecting a sensitive battery of bioassays to detect toxic effects of metals in effluents. Ecotox Environ Safe 110:73–81

    Article  Google Scholar 

  • Dudka S, Adriano DC (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26:590–602

    Article  CAS  Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295–302

    Article  Google Scholar 

  • Gruiz K (2005) Biological tools for the soil ecotoxicity evaluation: soil testing triad and the interactive ecotoxicity tests for contaminated soil. In: Fava F, Canepa P (eds) Innovative approaches to the bioremediation of contaminated sites. Soil remediation 6. INCA, Venice, pp 45–70

    Google Scholar 

  • Gustin MS, Biester H, Kim CS (2002) Investigation of the light-enhanced emission of mercury from naturally enriched susbtrates. Atmos Environ 36:3241–3254

    Article  CAS  Google Scholar 

  • Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428

    Article  CAS  Google Scholar 

  • Henriques FS, Fernandes JC (1991) Metal uptake and distribution in rush (Juncus conglomeratus L.) plants growing in pyrites mine tailings at Lousal, Portugal. Sci Total Environ 102:253–260

    Article  CAS  Google Scholar 

  • Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrate and plant bioassays. Environ Monit Assess 185:2989–2998

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments. J Soil Sediment 1:15–20

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Koerdel W, Hennecke D, Achazi R, Warnecke D, Wilke BM, Winkel B, Heiden S (2002) Bioassays for the ecotoxicological and genotoxicological assessment of contaminated soils (results of a round-robin test): part II—assessment of the habitat function of soils-tests with soil microflora and fauna. J Soil Sediment 2(2):83–90

    Article  CAS  Google Scholar 

  • ISO 11348 (2007) Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test)—part 3: method using freeze-dried bacteria. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 17512 (2008) Soil quality—avoidance test for determining the quality of soils and effects of chemicals on behavior—part 1: test with earthworms (Eisenia fetida and Eisenia andrei). International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 17512 (2011) Soil quality—avoidance test for determining the quality of soils and effects of chemicals on behaviour—part 2: test with collembolans (Folsomia candida). International Organization for Standardization, Geneva

    Google Scholar 

  • Johnson MS, Cooke JA, Stevenson JKW (1994) Revegetation of metalliferous wastes and land after metal mining. In: Hester RE and Harrison RM (eds.) mining and its environmental impact. Royal Society of Chemistry. 164 pp

  • Leitgib L, Kálmán J, Gruiz K (2007) Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere 66:428–434

    Article  CAS  Google Scholar 

  • Lopez-Roldan R, Kazlauskaite L, Ribo JM, Riva MC, Gonzalez S, Cortina JL (2012) Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Sci Total Environ 440:307–313

    Article  CAS  Google Scholar 

  • Loureiro S, Ferreira ALG, Soares AMVM, Nogueira AJA (2005) Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere 61:168–177

    Article  CAS  Google Scholar 

  • Lowry GU, Shaw S, Kim CS, Rytuba JJ, Brown GE (2004) Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and sulphur bank mercury mine tailings. Environ Sci Technol 38:5101–5111

    Article  CAS  Google Scholar 

  • Maisto G, Manzo S, DeNicola F, Carotenuto R, Rocco A, Alfani A (2011) Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests. J Environ Monit 13:3049–3056

    Article  CAS  Google Scholar 

  • Martínez J, Navarro A, Lunar R, García-Guinea J (1998) Mercury pollution in a large marine basin: a natural venting system in the south–west Mediterranean margin. Nat Resour 34(3):9–15

    Google Scholar 

  • Ministry of housing, spatial planning and environment (VROM) (2000) Circular on target values and intervention values for soil remediation. The Hague

  • Natal da Luz T, Moreira-Santos M, Ruepert C, Castillo LE, Ribeiro R, Sousa JP (2012) Ecotoxicological characterization of a tropical soil after diazinon spraying. Ecotoxicology 21(8):2163–2176

    Article  CAS  Google Scholar 

  • Navarro Flores A, Martínez Sola F (2010) Evaluation of metal attenuation from mine tailings in SE Spain (Sierra Almagrera): a soil-leaching column study. Mine Water Environ 29:53–67

    Article  CAS  Google Scholar 

  • Navarro A, Martínez J, Font X, Viladevall M (2000) Modelling of modern mercury vapor transport in an ancient hydro-thermal system: environmental and geochemical implications. Appl Geochem 15:281–294

    Article  Google Scholar 

  • Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49:1089–1101

    Article  CAS  Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    Article  CAS  Google Scholar 

  • Navarro A, Cardellach E, Corbella M (2009a) Mercury mobility in mine waste from Hg-mining areas in Almería, Andalusia (SE Spain). J Geochem Explor 101:236–246

    Article  CAS  Google Scholar 

  • Navarro A, Cañadas I, Martínez D, Rodríguez J, Mendoza JL (2009b) Application of solar thermal desorption to remediation of mercury-contaminated soils. Sol Energy 83:1405–1414

    Article  CAS  Google Scholar 

  • Navarro A, Cañadas I, Rodríguez J, Martínez D (2012) Leaching characteristics of mercury mine wastes before and after solar thermal desorption. Environ Eng Sci 29:915–928

    Article  CAS  Google Scholar 

  • OECD 201 (2011) Algae, growth inhibition test. Guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • OECD 202 (2004) Daphnia sp., Acute immobilization test. Guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • OECD 203 (1992) Fish, acute toxicity test. Guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • OECD 207 (1984) Earthworm, acute toxicity test. Guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • OECD 208 (2006) Terrestrial plant test: seedling emergence and seedling growth test. Guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • Pereira-Miranda AF, Rodrigues JML, Barata C, Riva MC, Nugegoda D, Soares AMVMA (2011) The use of Daphnia magna immobilization tests and soil microcosmos to evaluate the toxicity of dredged sediments. J Soil Sediment 11(2):373–381

    Article  Google Scholar 

  • Ramírez WA, Domene X, Ortiz O, Alcañiz JM (2008) Toxic effects of digested, composted and thermally-dried sewage sludge on three plants. Bioresource Technol 99:7168–7175

    Article  Google Scholar 

  • Riva MC, Valles B (1994) Effect of components of the textile mothproofing process on three freshwater microalgae species. Bull Environ Contam Toxicol 52:292–297

    Article  CAS  Google Scholar 

  • Riva MC, Cegarra J, Crespi M (1993) Effluent ecotoxicology in the wool-scouring process. Sci Total Environ 134(2):1143–1150

    Article  Google Scholar 

  • Riva MC, Ribó J, Gibert C, Alañón P (2007) Acute toxicity of leather processing effluents on Vibrio fisheri and Brachydanio rerio. Afinidad 528:182–188

    Google Scholar 

  • Rocha L, Rodrigues SM, Lopes I, Soares AMVM, Duarte AC, Pereira E (2011) The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity. Chemosphere 84(10):1495–1505

    Article  CAS  Google Scholar 

  • Rytuba JJ (2005) Geogenic and mining sources of mercury to the environment. In: Parsons MB, Percival JB (eds.) Mercury, Sources, Measurements, Cycles and Effects. Short Course Series, vol. 34. Min. Ass. of Canada

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228–231

    Article  Google Scholar 

  • Shaw J, Lowry GU, Kim CS, Rytuba JJ, Brown GE (2001) The influence of colloidal phases on Hg-transport from mercury mine waste tailings: a laboratory case study of the New Idria and Sulphur Bank Mines, California, USA. Eleventh Annual V.M. Goldschmidt Conference

  • Torres KC, Johnson ML (2001) Bioaccumulation of metals in plants, arthropods, and mice at a seasonal wetland. Environ Toxicol Chem 20(11):2617–2626

    Article  CAS  Google Scholar 

  • Viladevall M, Font X, Navarro A (1999) Geochemical mercury survey in the Azogue Valley (Betic area, SE Spain). J Geochem Explor 66:27–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Universitat Politècnica de Catalunya (UPC) and R&D Gestió i Serveis Ambientals S.L. (Spain) through a doctoral grant to Jaume Bori and by the Spanish Ministry of Economy and Competitiveness through the projects CTM2010-18167 and CTM2015-68224R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Bori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bori, J., Vallès, B., Navarro, A. et al. Geochemistry and environmental threats of soils surrounding an abandoned mercury mine. Environ Sci Pollut Res 23, 12941–12953 (2016). https://doi.org/10.1007/s11356-016-6463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6463-1

Keywords

Navigation