Skip to main content
Log in

MiSeq HV4 16S rRNA gene analysis of bacterial community composition among the cave sediments of Indo-Burma biodiversity hotspot

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Caves in Mizoram, Northeast India, are potential hotspot diversity regions due to the historical significance of the formation of the Indo-Burman plateau and also because of their unexplored and unknown diversity. High-throughput paired end Illumina sequencing of the V4 region of 16S rRNA was performed to study the bacterial community of three caves situated in Champhai district of Mizoram, Northeast India. A total of 10,643 operational taxonomic units (OTUs) (based on 97 % cutoff) comprising of 21 major and 21 candidate phyla with a sequencing depth of 1,140,013 were found in this study. The overall taxonomic profile obtained by the RDP classifier and Greengenes OTU database revealed high diversity within the bacterial communities. Communities were dominated by Planctomycetes, Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes, while members of Archaea were less varied and mostly comprising of Eukaryoarchea. Analysis revealed that Farpuk (CFP) cave sediment has low microbial diversity and is mainly dominated by Actinobacteria (80 % reads), whereas different bacterial communities were found in the caves of Murapuk (CMP) and Lamsialpuk (CLP). Analysis also revealed that a major portion of the identified OTUs was classified under rare biosphere. Importantly, all these caves recorded a high number of unclassified OTUs, which might represent new species. Further analysis with whole genome sequencing is needed to validate the unknown species as well as to determine their functional role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adetutu EM, Thorpe K, Bourne S, Cao X, Shahsavari E, Kirby G, Ball AS (2011) Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia 103:959–968

    Article  Google Scholar 

  • Adetutu EM, Thorpe K, Shahsavari E, Bourne S, Cao X, Fard RMN, Kirby G, Ball AS (2012) Bacterial community survey of sediments at Naracoorte Caves, Australia. Int J Speleol 41(2):137–147

    Article  Google Scholar 

  • Aravindraja C, Viszwapriya D, Karutha PS, Ultradeep (2013) 16S rRNA sequencing analysis of geographically similar but diverse unexplored marine samples reveal varied bacterial community composition. PLoS ONE 8(10):e76724. doi:10.1371/journal.pone.0076724

    Article  CAS  Google Scholar 

  • Barton HA (2006) Introduction to cave microbiology: a review for the non-specialist. J Cave Karst Stud 68:43–54

    Google Scholar 

  • Barton HA (2014) Life in extreme environments: microbial life of cave systems. In: Wagner D (ed) Starving artists: bacterial oligotrophic heterotrophy in caves. De Gruyter, Berlin

    Google Scholar 

  • Barton AH, Northup ED (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69:163–178

    Google Scholar 

  • Barton HA, Spear JR, Pace NR (2001) Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiol J 18:359–368

    Article  CAS  Google Scholar 

  • Brook BW, Sodhi NS, Ng PKL (2003) Catastrophic extinctions follow deforestation in Singapore. Nature 424:420–424

    Article  CAS  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Conrad R, Erkel C, Liesack W (2006) Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 17:262–267

    Article  CAS  Google Scholar 

  • Cuezva S, Fernandez-Cortes A, Porca E, Pašić L, Jurado V, Hernandez-Marine M, Serrano-Ortiz P, Hermosin B, Carlos Cañaveras J, Sanchez-Moral S, Saiz-Jimenez C (2012) The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol Ecol 81:281–290

    Article  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  Google Scholar 

  • Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995) A new obligately chemolithoautotrophic, nitriteoxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol 164(1):16–23

    Article  CAS  Google Scholar 

  • Engel AS, Meisinger DB, Porter ML, Payn R, Schmid M, Stern LA, Schleifer KH, Lee NM (2010) Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). ISME J 4:98–110

    Article  Google Scholar 

  • Epure J, Meleg JN, Munteanu CM, Roban RD, Moldovan OT (2014) Bacterial and fungal diversity of quaternary cave sediment deposits. Geomicrobiol J 31:116–127

    Article  Google Scholar 

  • Fuerst JA, Sagulenko E (2011) Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413

    Article  CAS  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, MacDonald P, Fitzhugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, Dearellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C (2002) The genome of M. Acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12(4):532–542

    Article  CAS  Google Scholar 

  • Gebauer HD, Chhakchhuak B, Sootinck N (2001) Caves of Mizoram (speleological projects in NE-India) 5:61

  • Gray CJ, Engel AS (2013) Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer. ISME J 7(2):325–337

    Article  CAS  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9pp

  • Hanada S, Hiraishi A, Shimada K, Matsuura K (1995) Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Evol Microbiol 45:676–681

    CAS  Google Scholar 

  • Hugenholtz P, Stackebrandt E (2004) Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54:2049–2051

    Article  Google Scholar 

  • Jetten MS, Sliekers O, Kuypers M, Dalsgaard T, van Niftrik L, Cirpus I, van de Pas-Schoonen K, Lavik G, Thamdrup B, Le Paslier D, Op den Camp HJ, Hulth S, Nielsen LP, Abma W, Third K, Engström P, Kuenen JG, Jørgensen BB, Canfield DE, Sinninghe Damsté JS, Revsbech NP, Fuerst J, Weissenbach J, Wagner M, Schmidt I, Schmid M, Strous M (2003) Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Appl Microbiol Biotechnol 63:107–114

    Article  CAS  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  CAS  Google Scholar 

  • Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) In: Dwarkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Introduction to the Proteobacteria. The prokaryotes, Vol. 5. Springer, New York, pp 3–37

    Google Scholar 

  • Li J, Tan B, Mai K, Ai Q, Zhang W, Xu W, Liufu Z, Ma H (2005) Comparative study between probiotic bacterium Arthrobacter XE-7 and chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic vibrios. Aquaculture 253:140–147

    Article  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  Google Scholar 

  • Lü Z, Lu Y (2012) Complete genome sequence of a thermophilic methanogen, Methanocella conradii HZ254, isolated from Chinese rice field soil. J Bacteriol 194(9):2398–2399

    Article  Google Scholar 

  • MacLeod FA, Guiot SR, Costerton JW (1990) Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56:1598–1607

    CAS  Google Scholar 

  • Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane. Science 276:1568–1571

    Article  Google Scholar 

  • Minyard ML, Bruns MA, Liermann LJ, Buss HL, Brantley SL (2012) Bacterial associations with weathering minerals at the Regolith-Bedrock interface, Luquillo Experimental Forest, Puerto Rico. Geomicrobiol J 29:792–803

    Article  CAS  Google Scholar 

  • Moss JA, Nocker A, Snyder RA (2011) Microbial characteristics of a submerged karst cave system in Northern Florida. Geomicrobiol J 28:719–931

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Northup DE, Melim LA, Spilde MN, Hathaway JM, Garcia MG, Moya M, Stone FD, Boston PJ, Dapkevicius MLNE, Riquelme C (2011) Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11:601–618

    Article  CAS  Google Scholar 

  • Ortiz M, Neilson JW, Nelson WM, Legatzki A, Byrne A, Yu Y, Wing RA, Soderlund CA, Pryor BM, Pierson LS, Maier RM (2013) Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ. Microb Ecol 65:371–383

    Article  Google Scholar 

  • Ortiz M, Legatzki A, Neilson JW, Fryslie B, Nelson WM, Wing RA, Soderlund CA, Pryor BM, Maier RM (2014) Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8:478–491

    Article  CAS  Google Scholar 

  • Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27

    Article  CAS  Google Scholar 

  • Reid A, Buckley M (2011) Washington, DC: American Academy of Microbiology. The rare biosphere: a report from the American Academy of Microbiology

  • Saiz-Jimenez C (2012) Microbiological and environmental issues in show caves. World J Microbiol Biotechnol 28:2453–2464

    Article  Google Scholar 

  • Sakai S, Takaki Y, Shimamura S, Sekine M, Tajima T, Kosugi H, Ichikawa N, Tasumi E, Hiraki AT, Shimizu A, Kato Y, Nishiko R, Mori K, Fujita N, Imachi H, Takai K (2011) Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 6(7):e22898

    Article  CAS  Google Scholar 

  • Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S (2002) Altamira cave Paleolithic paintings harbour partly unknown bacterial communities. FEMS Microbiol Lett 211:7–11

    Article  CAS  Google Scholar 

  • Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer KH, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106

    Article  CAS  Google Scholar 

  • Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y (2003) Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851

    Article  CAS  Google Scholar 

  • Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Mark I, Steven MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82:326–340

    Article  CAS  Google Scholar 

  • Strapoc D, Picardal FW, Turich C, Schaperdoth I, Macalady JL, Lipp JS, Lin YS, Ertefai TF, Schubotz F, Hinrichs KU, Mastalerz M, Schimmelmann (2008) A methane-producing microbial community in a coal bed of the Illinois basin. Appl Environ Microbiol 74(8):2424–2432

    Article  CAS  Google Scholar 

  • Tetu SG, Breakwell K, Elbourne LD, Holmes AJ, Gillings MR, Paulsen IT (2013) Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J 7:1227–1236

    Article  CAS  Google Scholar 

  • Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656

    Article  CAS  Google Scholar 

  • Waldron PJ, Petsch ST, Martini AM, Nüsslein K (2007) Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter. Appl Environ Microbiol 73(13):4171–4179

    Article  CAS  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, Deboy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson K, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into their lifestyles in soils. Appl Environ Microbiol 75:2046–2056

    Article  CAS  Google Scholar 

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144(1):1–7

    Article  Google Scholar 

  • Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20(4):593–621

    Article  CAS  Google Scholar 

  • Wu Y, Tan L, Liu W, Wang B, Wang J, Cai Y, Lin X (2015) Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. Front Microbiol 6:244

Download references

Acknowledgments

This research was supported by a grant from the State Biotech Hub and Bioinformatics Infrastructure Facility sponsored by Department of Biotechnology, Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachimuthu Senthil Kumar.

Additional information

Responsible editor: Robert Duran

Nucleotide sequence accession number

Paired end Illumina sequence data from this study were submitted to the NCBI Sequence Read Archive (SRA) under accession numbers SRA064116, SRA064118, and SRA064120.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Top ten bacterial genera based on OTU number among the cave samples.

Table S2

Top ten OTUs based on total read count number among the cave samples.

Table S3

Pearson’s correlation coefficient between soil characteristics and bacterial phyla.

Figure S1

Graphical representation of the relative abundance of bacterial diversity from phylum to species level of CFP using the Krona visualization tool.

Figure S2

Graphical representation of the relative abundance of bacterial diversity from phylum to species level of CLP using Krona visualization tool.

Figure S3

Graphical representation of the relative abundance of bacterial diversity from phylum to species level of CMC using the Krona visualization tool.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Mandal, S., Zothansanga, Panda, A.K. et al. MiSeq HV4 16S rRNA gene analysis of bacterial community composition among the cave sediments of Indo-Burma biodiversity hotspot. Environ Sci Pollut Res 23, 12216–12226 (2016). https://doi.org/10.1007/s11356-016-6423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6423-9

Keywords

Navigation