Skip to main content

Advertisement

Log in

Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production

  • Biomonitoring of atmospheric pollution: possibilities and future challenges
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30–180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli. Taking this into account, the results of this study point out the suitability of lichens as air pollution magnetic biomonitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abril GA, Wannaz ED, Mateos AC, Pignata ML (2014) Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results. Atmos Environ 82:154–163

    Article  CAS  Google Scholar 

  • Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sust Ener Rev 15:2252–2261

    Article  CAS  Google Scholar 

  • Ayrault S, Clochiatti R, Carrot F, Daudin L, Bennett JP (2007) Factors to consider for trace element deposition biomonitoring surveys with lichen transplants. Sci Total Environ 372:717–727

    Article  CAS  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plantarum 53:214–222

    Article  Google Scholar 

  • Bargagli R, Nimis PL (2002) Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer, Norwell, pp 295–299

    Chapter  Google Scholar 

  • Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ Monit Assess 69:205–22

    Article  CAS  Google Scholar 

  • Bermudez GMA, Moreno M, Invernizzi R, Plá R, Pignata ML (2010) Heavy metal pollution in topsoils near a cement plant: The role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations. Chemosphere 78:375–381

    Article  CAS  Google Scholar 

  • Bettinelli M, Spezia S, Bizzarri G (1996) Trace element determination in lichens by ICP–MS. Atom Spectros 17:133–141

    CAS  Google Scholar 

  • Bluvshtein N, Mahrer Y, Sandler A, Rytwo G (2011) Evaluating the impact of a limestone quarry on suspended and accumulated dust. Atmos Environ 45:1732–1739

    Article  CAS  Google Scholar 

  • Branquinho C, Gaio-Oliveira G, Augusto S, Pinho P, Máguas C, Correia O (2008) Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry. Environ Pollut 151:292–299

    Article  CAS  Google Scholar 

  • Böhm P, Wolterbeek H, Verburg T, Mulisek L (1998) The use of tree bark for environmental pollution monitoring in the Czech Republic. Environ Pollut 102:243–250

    Article  Google Scholar 

  • Brunialti G, Frati L (2014) Bioaccumulation with lichens: the Italian experience. Int J Environ Stud 71:15–26

    Article  CAS  Google Scholar 

  • Chaparro MA, Lavornia JM, Chaparro MA, Sinito AM (2013) Biomonitors of urban air pollution: magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environ Pollut 172:61–69

    Article  CAS  Google Scholar 

  • Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites. Grain-size and compositional dependence. Phys Earth Planet Inter 13:260–267

    Article  Google Scholar 

  • Demiray AD, Yolcubal I, Akyol NH, Çobanoğlu G (2012) Biomonitoring of airborne metals using the Lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecol Ind 18:632–643

    Article  CAS  Google Scholar 

  • Dunlop DJ (2002a) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res 107(B3) doi:10.1029/2001JB000486

  • Dunlop DJ (2002b) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 2. Application to data for rocks, sediments, and soils. J Geophys Res 107(B3) doi:10.1029/2001JB000487

  • Evans M, Heller F (2003) Environmental magnetism: principles and applications of enviromagnetics, 86. Academic Press, San Diego

    Google Scholar 

  • Fabian K, Reimann C, McEnroe SA, Willemoes-Wissing B (2011) Magnetic properties of terrestrial moss (Hylocomium splendens) along a north-south profile crossing the city of Oslo, Norway. Sci Total Environ 409:2252–2260

    Article  CAS  Google Scholar 

  • Farmer AM (1993) The effects of dust on vegetation—a review. Environ Pollut 79:63–75

    Article  CAS  Google Scholar 

  • Ferreira AB, Santos JO, Souza SO, Júnior WNS, Alves JPH (2012) Use of passive biomonitoring to evaluate the environmental impact of emissions from cement industries in Sergipe State, northeast Brazil. Microchem J 103:15–20

    Article  CAS  Google Scholar 

  • Ferry BW, Baddeley MS, Hawksworth DL (1973) Lichens and air pollution. University of Toronto Press, Toronto

    Google Scholar 

  • Flanders PJ (1994) Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. J Appl Phys 75:5931–5936

    Article  CAS  Google Scholar 

  • Flanders PJ (1999) Identifying fly ash at a distance from fossil fuel power stations. Environ Sci Technol 33:528–532

    Article  CAS  Google Scholar 

  • Frati L, Brunialti G, Loppi S (2005) Problems related to lichen transplants to monitor trace element deposition in repeated surveys: a case study from central Italy. J Atmos Chem 52:221–230

    Article  CAS  Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371

    Article  CAS  Google Scholar 

  • Garty J, Garty-Spitz RL (2011) Neutralization and neoformation: analogous processes in the atmosphere and in lichen thalli—a review. Environ Exp Bot 70:67–79

    Article  Google Scholar 

  • Garty J, Karary Y, Harel J (1993) The impact of air pollution on the integrity of cell membranes and chlorophyll in the lichen Ramalina duriaei (De Not.) Bagl. transplanted to industrial sites in Israel. Arch Environ Contam Toxicol 24:455–460

    Article  CAS  Google Scholar 

  • Gautam P, Blahab U, Appel E (2005) Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmos Environ 39:2201–2211

    Article  CAS  Google Scholar 

  • Georgeaud VM, Rochette P, Ambrosi JP, Vandamme D, Williamson D (1997) Relationship between heavy metals and magnetic properties in a large polluted catchments: The Etang de Berre (south of France). Phys Chem Earth 22:211–214

    Article  Google Scholar 

  • Godinho RM, Wolterbeek HT, Verburg TG, Freitas MC (2008) Bioaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Pollut 151:318–325

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hanesch M, Scholger R, Dekkers MJ (2001) The application of fuzzy c-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Phys Chem Earth 26:885–891

    Article  Google Scholar 

  • Hansard R, Maher BA, Kinnersley R (2011) Biomagnetic monitoring of industry-derived particulate pollution. Environ Pollut 159:1673–1681

    Article  CAS  Google Scholar 

  • Harrison RJ, Feinberg JM (2008) FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem Geophys Geosyst 9:Q05016. doi:10.1029/2008GC001987

    Article  Google Scholar 

  • Hay KL, Dearing JA, Baban SMJ, Loveland P (1997) A preliminary attempt to identify atmospherically derived pollution particles in English topsoils from magnetic susceptibility measurements. Phys Chem Earth 22:207–210

    Article  Google Scholar 

  • Heller F, Strzyszcz Z, Magiera T (1998) Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland. J Geophys Res 103(B8):17767–17774

    Article  CAS  Google Scholar 

  • Hoffmann V, Knab M, Appel E (1999) Magnetic susceptibility mapping of roadside pollution. J Geochem Explor 66:313–326

    Article  CAS  Google Scholar 

  • Hunt A, Jones J, Oldfield F (1984) Magnetic measurements and heavy metals in atmospheric particles of anthropogenic origin. Sci Total Environ 33:129–139

    Article  CAS  Google Scholar 

  • Jordanova D, Petrov P, Hoffmann V, Gocht T, Panaiotu C, Tsacheva T, Jordanova N (2010) Magnetic signature of different vegetation species in polluted environment. Stud Geophys Geod 54:417–442

    Article  Google Scholar 

  • Kortesharju M, Kortesharju J (1989) Studies on epiphytic lichens and pine bark in the vicinity of a cement works in northern Finland. Silva Fenn 23:301–310

    Article  Google Scholar 

  • Lehndorff E, Urbat M, Schwark L (2006) Accumulation histories of magnetic particles on pine needles as function of air quality. Atmos Environ 40:7082–7096

    Article  CAS  Google Scholar 

  • Leocoanet H, Leveque F, Ambrosi J-P (2001) Magnetic properties of salt-marsh soils contaminated by iron industry emissions (southeast France). J Appl Geophys 48:67–81

    Article  Google Scholar 

  • Ljubič Mlakar T, Kotnik J, Jeran Z, Vuk T, Mrak T, Fajon V (2011) Biomonitoring with epiphytic lichens as a complementary method for the study of mercury contamination near a cement plant. Environ Monit Assess 181:225–241

    Article  Google Scholar 

  • Loppi S, Pirintsos SA (2000) Effect of dust on epiphytic lichen vegetation in the Mediterranean area (Italy and Greece). Isr J Plant Sci 48:91–95

    Article  Google Scholar 

  • Magiera T, Jabłońska M, Strzyszcz Z, Rachwal M (2011) Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos Environ 45:4281–4290

    Article  CAS  Google Scholar 

  • Maher BA, Moore C, Matzka J (2008) Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos Environ 42:364–373

    Article  CAS  Google Scholar 

  • Mandal A, Voutchkov M (2011) Heavy metals in soils around the cement factory in Rockfort, Kingston, Jamaica. Int J Geosci 2:48–54

    Article  CAS  Google Scholar 

  • McEnroe SA, Robinson P, Langenhorst F, Frandsen C, Terry MP, Boffa Ballaran T (2007) Magnetization of exsolution intergrowths of hematite and ilmenite: mineral chemistry, phase relations, and magnetic properties of hemo-ilmenite ores with micron- to nanometer-scale lamellae from Allard Lake, Quebec. J Geophys Res 112:B10103. doi:10.1029/2007JB004973

    Article  Google Scholar 

  • Mikhailova I (2002) Transplanted lichens for bioaccumulation studies. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer, Norwell, pp 301–304

    Chapter  Google Scholar 

  • Moreno E, Sagnotti L, Winkler A, Dinarès-Turell J, Cascella A (2003) Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmos Environ 37:2967–2977

    Article  CAS  Google Scholar 

  • Morris WA, Versteeg JK, Bryant DW, Legzdins AE, McCarry BE, Marvin XH (1995) Preliminary comparisons between mutagenic and magnetic susceptibility of respirable airborne particle. Atmos Environ 29:3441–3450

    Article  CAS  Google Scholar 

  • Muxworthy A, Matzka J, Petersen N (2001) Comparison of magnetic parameters of urban atmospheric particulate matter with pollution and meteorological data. Atmos Environ 35:4379–4386

    Article  CAS  Google Scholar 

  • Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens—monitoring lichens, NATO Science Series. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Paoli L, Guttová A, Grassi A, Lackovičová A, Senko D, Loppi S (2014) Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecol Ind 40:127–135

    Article  CAS  Google Scholar 

  • Paoli L, Guttová A, Grassi A, Lackovičová A, Senko D, Sorbo S, Basile A, Loppi S (2015a) Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia). Environ Sci Pollut Res 22:15891–15902

    Article  CAS  Google Scholar 

  • Paoli L, Munzi S, Guttová A, Senko D, Sardella G, Loppi S (2015b) Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecol Indic 40:127–135

    Article  Google Scholar 

  • Petrovský E, Kapička A, Jordanova N, Borůvka L (2001) Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium. J Appl Geophys 48:127–136

    Article  Google Scholar 

  • Pike CR, Roberts AP, Verosub KL (1999) Characterizing interactions in fine magnetic particle systems using first order reversal curves. J Appl Phys 85:6660–6667

    Article  CAS  Google Scholar 

  • Revuelta MA, McIntosh G, Pey J, Pérez N, Querol X, Alastuey A (2014) Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain). Environ Pollut 188:109–117

    Article  CAS  Google Scholar 

  • Richardson DHS (1981) Pollution monitoring with lichens (naturalists’ handbooks 19). The Richmond Publishing Co. Ltd., Slough

    Google Scholar 

  • Roberts AP, Pike CR, Verosub KL (2000) First order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J Geophys Res 105:28461–28475

    Article  Google Scholar 

  • Sagnotti L, Macrì P, Egli R, Mondino M (2006) Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J Geophys Res 111:B12S22. doi:10.1029/2006JB004508

  • Sagnotti L, Taddeucci J, Winkler A, Cavallo A (2009) Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem Geophy Geosy 10, Q08Z06 http://dx.doi.org/10.1029/2009GC002563

  • Sagnotti L, Winkler A (2012) On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy. Atmos Environ 59:131–140

    Article  CAS  Google Scholar 

  • Salo H (2014) Preliminary comparison of the suitability of three sampling materials to air pollution monitoring. Fennia 192:154–163

    Article  Google Scholar 

  • Salo H, Bucko MS, Vaahtovuo E, Limo J, Mäkinen J, Pesonen LJ (2012) Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J Geochem Explor 115:69–81

    Article  CAS  Google Scholar 

  • Salo H, Mäkinen J (2014) Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland. Atmos Environ 97:19–27

    Article  CAS  Google Scholar 

  • Schuhmacher M, Domingo JL, Garreta J (2004) Pollutants emitted by a cement plant: health risks for the population living in the neighborhood. Environ Res 95:198–206

    Article  CAS  Google Scholar 

  • Shu J, Dearing JA, Morse AP, Yu L, Yuan N (2001) Determining the sources of atmospheric particles in Shanghai, China, from magnetic and geochemical properties. Atmos Environ 35:2615–2625

    Article  CAS  Google Scholar 

  • Sloof JE (1995) Lichens as quantitative biomonitors for atmospheric trace-element deposition using transplant. Atmos Environ 29:11–20

    Article  CAS  Google Scholar 

  • Szönyi M, Sagnotti L, Hirt AM (2007) On leaf magnetic homogeneity in particulate matter biomonitoring studies. Geophys Res Lett 34:L06306. doi:10.1029/2006GL029076

    Article  Google Scholar 

  • Szönyi M, Sagnotti L, Hirt AM (2008) A refined biomonitoring study of airborne particulate matter pollution in Rome, with magnetic measurements on Quercus ilex tree leaves. Geophys J Int 173:127–141

    Article  Google Scholar 

  • Thompson R, Oldfield F (1986) Environmental magnetism. Allen & Unwin Ltd., London

    Book  Google Scholar 

  • Vuković G, Aničić Urošević M, Tomašević M, Samson R, Popović A (2015) Biomagnetic monitoring of urban air pollution using moss bags (Sphagnum girgensohnii). Ecol Ind 52:40–47

    Article  Google Scholar 

  • Wang X, Løvlie R, Zhao X, Yang Z, Jiang F, Wang S (2010) Quantifying ultrafine pedogenic magnetic particles in Chinese loess by monitoring viscous decay of superparamagnetism. Geochem Geophys Geosyst 11:Q10008. doi:10.1029/2010GC003194

    Article  Google Scholar 

  • Xie S, Dearing JA, Boyle JF, Bloemendal J, Morse AP (2001) Association between magnetic properties and element concentrations of Liverpool street dust and its implications. J Appl Geophys 48:83–92

    Article  Google Scholar 

  • Yang T, Liu Q, Li H, Zeng Q, Chan L (2010) Anthropogenic magnetic particles and heavy metals in the road dust: magnetic identification and its implications. Atmos Environ 44:1175–1185

    Article  CAS  Google Scholar 

  • Zhang CX, Huang BC, Li ZY, Liu H (2006) Magnetic properties of highroad-side pine tree leaves in Beijing and their environmental significance. Chinese Sci Bull 51:3041–3052

    Article  CAS  Google Scholar 

  • Zhang CX, Huang BC, Piper JDA, Luo RS (2008) Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores. Sci Total Environ 393:177–190

    Article  CAS  Google Scholar 

  • Zhang CX, Qiao Q, Piper JDA, Huang BC (2011) Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ Pollut 159:3057–3070

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research carried out in the framework of the project “Center of excellence for protection and use of landscape and for biodiversity” ITMS 26240120014 financed by European Fund for Regional Development under the Operational programme Research and Development (002/2009/4.1/OPVaV). LP acknowledges the National Scholarship Programme of the Slovak Republic (ID 9030), funded by the Ministry of Education, Science, Research and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Paoli.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOC 79.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paoli, L., Winkler, A., Guttová, A. et al. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production. Environ Sci Pollut Res 24, 12063–12080 (2017). https://doi.org/10.1007/s11356-016-6203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6203-6

Keywords

Navigation