Skip to main content
Log in

Magnetic signature of different vegetation species in polluted environment

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Detailed magnetic study on vegetation samples from several strongly polluted and clean sites in Bulgaria is carried out in order to evaluate suitability of different species as passive dust collectors in magnetometry. From each location, available species among lichens, mosses, poplar leaves, dandelion, needles have been sampled. Magnetic susceptibility calculated on mass-specific basis shows wide variability between diamagnetic signal up to 846 × 10−8 m3/kg. Lichens and mosses are found to be the species, showing magnetic signals with the strongest contrast between clean and polluted environment. The main magnetic phase is magnetite-like according to the results from thermomagnetic analysis of susceptibility on magnetic extracts. Scanning electron microscopy (SEM) microphotographs reveal the presence of abundant particulate matter on vegetation surface both with anthropogenic (spherules) and lithogenic origin. Magnetic grain size deduced by the ratio of saturation remanent magnetization (SIRM) and mass-specific magnetic susceptibility (χ) and coercivities (Bc and Bcr) suggest that different species accumulate preferentially small SD-like grains from pollution emissions. Contrasting relationship of the ratio of anhysteretic remanent magnetization (ARM) and χ for polluted vs clean sites deduced by needles and lichens may be related to transformation of the accumulated dust particles within lichens’ tissue. This finding indicates that the exact species used as biological dust collector is of importance when studying spatial grain size distribution of magnetic dust particles. Pilot study on polycyclic aromatic hydrocarbons (PAH) content and its relation to magnetic parameters shows good correspondence between high levels of PAHs and high SIRM values for locations affected by non-ferrous industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano D.C., 1986. Trace Elements in the Terrestrial Environment. Springer-Verlag, New York, 46–59.

    Google Scholar 

  • Blasco M., Domeñ C. and Nerín C., 2006. Use of lichens as pollution biomonitors in remote areas: Comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the Somport tunnel (Pyrenees). Environ. Sci. Technol., 40, 6384–6391.

    Article  Google Scholar 

  • Blundell A., Hannam J.A., Dearing J.A. and Boyle J.E., 2009. Detecting atmospheric pollution in surface soils using magnetic measurements: a reappraisal using an England and Wales database. Env. Pollut., 157, 2878–2890.

    Article  Google Scholar 

  • Böhme F., Welsch-Pausch K. and McLachlan M., 1999. Uptake of semivolatile organic compounds in agricultural plants: field measurements and interspecies variability. Environ. Sci. Technol., 33, 1805–1813.

    Article  Google Scholar 

  • Briat J.F. and Lobreaux S., 1997. Iron transport and storage in plants. Trends Plant Sci., 2, 187–193.

    Article  Google Scholar 

  • Chaparro M.A.E., Gogorza C.S.G., Chaparro M.A.E., Irurzun M.A. and Sinito A.M., 2006. Review of magnetism and heavy metal pollution studies of various environments in Argentina. Earth Planets Space, 58, 1411–1422.

    Google Scholar 

  • Davila A., Rey D., Mohamed K., Rubio B. and Guerra A., 2006. Mapping the sources of urban dust in a coastal environment by measuring magnetic parameters of Platanus hispanica leaves. Environ. Sci. Technol., 40, 3922–3928.

    Article  Google Scholar 

  • Djingova R., Wagner G. and Kuleff I., 1999. Screening of heavy metal pollution in Bulgaria using Populus nigra ‘Italica”. Sci. Tot. Environ., 234, 175–184.

    Article  Google Scholar 

  • Doushanov D., 2002. Environmental problems and control of pollution in iron industry. J. Environ. Protect. Ecol., 3, 92–100.

    Google Scholar 

  • Dunlop D. and Ozdemir O., 1997. Rock Magnetism — Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Flanders P., 1999. Identifying fly ash at a distance from fossil fuel power plant. Environ. Sci. Technol., 33, 528–532.

    Article  Google Scholar 

  • Gajdardziska-Josifovska M., McClean R.G., Schofield M.A., Sommer C.V. and Kean W.F., 2001. Discovery of nanocrystalline botanical magnetite. Eur. J. Mineral., 13, 863–870.

    Article  Google Scholar 

  • Garthy J., Galun M. and Kessel M., 1979. Localization of heavy metals and other elements accumulated in the lichen thallus. New Phytol., 82, 159–168.

    Article  Google Scholar 

  • Gautam P., Blaha U. and Appel E., 2005. Magnetic susceptibility of dust-loaded leaves as a proxy for traffic-related air pollution in Kathmandu sity, Nepal. Atmos. Environ., 39, 2201–2211.

    Article  Google Scholar 

  • Gocht T., Klemm O. and Grathwohl P., 2007. Long-term atmospheric bulk deposition of polycyclic aromatic hydrocarbons (PAHs) in rural areas of Southern Germany. Atmos. Environ., 41, 1315–1327.

    Article  Google Scholar 

  • Guelke M. and von Blanckenburg F., 2007. Fractionation of stable iron isotopes in higher plants. Environ. Sci. Technol., 41, 1896–1901.

    Article  Google Scholar 

  • Halsall C.J., Maher B.A., Karloukovski V.V., Shah P. and Watkins S.J., 2008. A novel approach to investigating indoor/outdoor pollution links: Combined magnetic and PAH measurements. Atmos. Environ., 42, 8902–8909.

    Article  Google Scholar 

  • Hanesch M. and Scholger R., 2002. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geol., 42, 857–870.

    Article  Google Scholar 

  • Hanesch M., Scholger R. and Rey D., 2003. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmos. Environ., 37, 5125–5133.

    Article  Google Scholar 

  • Hay K.L., Dearing J.A., Baban S.M.J. and Loveland P., 1997. A preliminary attempt to identify atmospherically derived pollution particles in English topsoils from magnetic susceptibility measurements. Phys. Chem. Earth, 22, 207–210.

    Article  Google Scholar 

  • Heslop D., Dekkers M., Kruiver P. and van Oorschot H., 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation — maximization algorithm. Geophys. J. Int., 148, 58–64.

    Article  Google Scholar 

  • Horstmann M. and McLachlan M., 1998. Atmospheric deposition of semivolatile compounds to two forest canopies. Atmos. Environ., 32, 1799–1809.

    Article  Google Scholar 

  • Innes J.L., 1985. Lichenometry. Prog. Phys. Geog., 9, 187–254.

    Article  Google Scholar 

  • Jacob J., Grimmer G. and Hildebrandt A., 1993. The use of passive samplers for monitoring polycyclic aromatic hydrocarbons in ambient air. Sci. Tot. Environ., 139/140, 307–321.

    Article  Google Scholar 

  • Jordanova N., Jordanova D. and Tsacheva T., 2008. Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma, 144, 557–571.

    Article  Google Scholar 

  • Kapička A., Petrovsky E., Fialová H., Podrázsky V. and Dvo-ák I., 2008. High resolutionmapping of anthropogenic pollution in the Giant Mountains National park using soil magnetometry. Stud. Geophys. Geod., 52, 271–284.

    Article  Google Scholar 

  • Kasama T., Murakami T., Ohnuki T. and Purvis W., 2002. Chemical changes of minerals trapped in the lichen Trapellia involuta: Implication for lichen effect on mobility of uranium and toxic metals. J. Nucl. Sci. Technol., Suppl. 3, 943–945 (http://homepage.mac.com/tkasama/takeshi/PDF-files/Kasama-JNSTs3.pdf)

    Google Scholar 

  • Kilcoyne S.H., Bentley P.M., Thongbai P., Gordon D.C. and Goodman B.A., 2000. The application of 57Fe Moessbauer spectroscopy in the investigation of iron uptake and translocation in plants. Nuclear Instruments and Methods in Physics Research, Section B., 160, 157–166.

    Article  Google Scholar 

  • Lehndorff E. and Schwark L., 2004. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler. Part II: polycyclic aromatic hydrocarbons (PAH). Atmos. Environ., 38, 3793–3808.

    Article  Google Scholar 

  • Lehndorff E., Urbat M. and Schwark L., 2006. Accumulation histories of magnetic particles on pine needles as function of air quality. Atmos. Environ., 40, 7082–7096.

    Article  Google Scholar 

  • McClean R.G., Schofield M.A., Kean W.F., Sommer C.V., Robertson D.P., Toth D. and Gajdardziska-Josifovska M., 2001. Botanical iron minerals: correlation between nanocrystal structure and modes of biological self-assembly. Eur. J. Mineral., 13, 1235–1242.

    Article  Google Scholar 

  • Maher B., Moore C. and Matzka J., 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ., 42, 364–373.

    Article  Google Scholar 

  • Matzka J. and Maher B., 1999. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations of vehicle-derived particulates. Atmos. Environ., 33, 4565–4569.

    Article  Google Scholar 

  • Moreno E., Sagnotti L., Dinares-Turell J., Winkler A. and Cascella A., 2003. Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmos. Environ., 37, 2967–2977.

    Article  Google Scholar 

  • Muxworthy A., Matzka J., Davila A. and Petersen N., 2003. Magnetic signature of daily sampled atmospheric particles. Atmos. Environ., 37, 4163–4169.

    Article  Google Scholar 

  • Sagnotti L., Macri P., Egli R. and Mondino M., 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): towards a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. Geophys. Res., 111, B12S22, doi: 10.1029/2006JB004508.

    Article  Google Scholar 

  • Sagnotti L., Taddeucci J., Winkler A. and Cavallo A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst., 10, Q08Z06, doi: 10.1029/2009GC002563.

    Article  Google Scholar 

  • Shu J., Dearing J., Morse H., Yu L. and Li C., 2000. Magnetic properties of daily sampled total suspended particulates in Shanghai. Environ. Sci. Technol., 34, 2393–2400.

    Article  Google Scholar 

  • Spassov S., Egli R., Heller F., Nourgaliev D. and Hannam J., 2004. Magnetic quantification of urban pollution sources in atmospheric particulate matter. Geophys. J. Int., 159, 555–564.

    Article  Google Scholar 

  • Strzyszcz Z., Magiera T. and Heller F., 1996. The influence of industrial emissions on the magnetic susceptibility of soils in Upper Silesia (Poland). Stud. Geophys. Geod., 40, 276–286.

    Article  Google Scholar 

  • Szonyi M., Sagnotti L. and Hirt A., 2008. A refined biomonitoring study of airborne particulate matter pollution in Rome with magnetic measurements of Quercus Ilex tree leaves. Geophys. J. Int., 173, 127–141.

    Article  Google Scholar 

  • Urbat M., Lehndorff E. and Schwark L., 2004. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler — Part I: magnetic properties. Atmos. Environ., 38, 3781–3792.

    Article  Google Scholar 

  • Zhang C.X., Huang B.C., Piper J.D.A. and Luo R.S., 2008. Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores. Sci. Tot. Environ., 393, 177–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Jordanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordanova, D., Petrov, P., Hoffmann, V. et al. Magnetic signature of different vegetation species in polluted environment. Stud Geophys Geod 54, 417–442 (2010). https://doi.org/10.1007/s11200-010-0025-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0025-7

Keywords

Navigation