Skip to main content
Log in

Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect

  • ECOTOX, the INRA's network of ecotoxicologists
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pesticides have long been used as the main solution to limit agricultural pests, but their widespread use resulted in chronic or diffuse environmental pollutions, development of insect resistances, and biodiversity reduction. The effects of low residual doses of these chemical products on organisms that affect both targeted species (crop pests) but also beneficial insects became a major concern, particularly because low doses of pesticides can induce unexpected positive—also called hormetic—effects on insects, leading to surges in pest population growth at greater rate than what would have been observed without pesticide application. The present study aimed to examine the effects of sublethal doses of deltamethrin, one of the most used synthetic pyrethroids, known to present a residual activity and persistence in the environment, on the peripheral olfactory system and sexual behavior of a major pest insect, the cotton leafworm Spodoptera littoralis. We highlighted here a hormetic effect of sublethal dose of deltamethrin on the male responses to sex pheromone, without any modification of their response to host-plant odorants. We also identified several antennal actors potentially involved in this hormetic effect and in the antennal detoxification or antennal stress response of/to deltamethrin exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad M, Sayyed AH, Crickmore N, Saleem MA (2007) Genetics and mechanism of resistance to deltamethrin in a field population of Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag Sci 63(10):1002–1010

    Article  CAS  Google Scholar 

  • Bianchi F et al (2012) An innovative bovine odorant binding protein-based filtering cartridge for the removal of triazine herbicides from water. Anal Bioanal Chem 405(2-3):1067–1075

    Article  Google Scholar 

  • Bigot L et al (2012) Peripheral regulation by ecdysteroids of olfactory responsiveness in male Egyptian cotton leaf worms, Spodoptera littoralis. Insect Biochem Mol Biol 42(1):22–31

    Article  CAS  Google Scholar 

  • Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J, van Engelsdorp D (2012) Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol 58(5):613–620

    Article  CAS  Google Scholar 

  • Boudjelal M, Sivaprasadarao A, Findlay JBC (1996) Membrane receptor for odour-binding proteins. Biochem J 317:23–27

    Article  CAS  Google Scholar 

  • Bradbury SP, Coats JR (1989) Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8:373–380

    Article  CAS  Google Scholar 

  • Brun-Barale A et al (2010) Multiple P450 genes overexpressed in deltamethrin-resistant strains of Helicoverpa armigera. Pest Manag Sci 66:900–909

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21(2):91–97

    Article  CAS  Google Scholar 

  • Calabrese EJ, Mattson MP (2011) Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal 5(1):25–38

    Article  Google Scholar 

  • Casida JE (2009) Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol 22:609–619

    Article  CAS  Google Scholar 

  • Cedergreen N, Streibig JC, Kudsk P, Mathiassen SK, Duke SO (2006) The occurrence of hormesis in plants and algae. Dose Response 5(2):150–162

    Article  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  CAS  Google Scholar 

  • Chertemps T et al (2012) A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila. BMC Biol 10:56

    Article  CAS  Google Scholar 

  • Chertemps T, Younus F, Steiner C, Durand N, Coppin CW, Pandey G, Oakeshott JG, Maïbèche M (2015) An antennal carboxylesterase from Drosophila melanogaster, esterase 6, is a candidate odorant-degrading enzyme toward food odorants. Front Physiol 6:315. doi:10.3389/fphys.2015.00315

    Article  Google Scholar 

  • Chirumbolo S (2012) Possible role of NF-jB in hormesis during ageing. Biogerontology 13:637–646

    Article  CAS  Google Scholar 

  • Choi J, Roche H, Caquet T (2001) Hypoxia, hyperoxia and exposure to potassium dichromate or fenitrothion alter the energy metabolism in Chironomus riparius Mg. (Diptera: Chironomidae) larvae. Comp Biochem Physiol C 130:11–17

    CAS  Google Scholar 

  • Cohen E (2006) Pesticide-mediated homeostatic modulation in arthropods. Pestic Biochem Physiol 85:21–27

    Article  CAS  Google Scholar 

  • Contreras E, Rausell C, Real MD (2013) Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains. PLoS One 8(1):e55330

    Article  CAS  Google Scholar 

  • Coppin CW, Jackson CJ, Sutherland T, Hart PJ, Devonshire AL, Russell RJ (2012) Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic insecticides. Insect Biochem Molec Biol 42:343–352

    Article  CAS  Google Scholar 

  • Cutler GC (2013) Insects, insecticides and hormesis: evidence and considerations for study. Dose Response 11(2):154–177

    Article  CAS  Google Scholar 

  • Dacher M, Smith BH (2008) Olfactory interference during inhibitory backward pairing in honey bees. PLoS One 3(10):1–14

    Article  Google Scholar 

  • Dai PL et al (2010) Effects of sublethal concentrations of bifenthrin and deltamethrin on fecundity, growth, and development of the honeybee Apis mellifera ligustica. Environ Toxicol Chem 29(3):644–649

    Article  CAS  Google Scholar 

  • De Coen WM, Janssen CR, Segner H (2001) The use of biomarkers in Daphnia magna toxicity testing V. In vivo alterations in the carbohydrate metabolism of Daphnia magna exposed to sublethal concentrations of mercury and lindane. Ecotoxicol Environ Saf 48(3):223–234

    Article  Google Scholar 

  • Decourtye A et al (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250

    Article  CAS  Google Scholar 

  • De Jong FMW, De Snoo GR, Van De Zande JC (2008) Estimated nationwide effects of pesticide spray drift on terrestrial habitats in the Netherlands. J Environ Manage 86:721–730

    Article  Google Scholar 

  • Delpuech JM, Legallet B, Fouillet P (2001) Partial compensation of the sublethal effect of delthamethrin on the sex pheromonal communication of Trichogramma brassicae. Chemosphere 42:985–991

    Article  CAS  Google Scholar 

  • Delpuech JM, Bardon C, Bouletreau M (2005) Increase of the behavioral response to kairomones by the parasitoid wasp Leptopilina heterotoma surviving insecticides. Arch Environ Contam Toxicol 49:186–191

    Article  CAS  Google Scholar 

  • Delpuech JM, Dupont C, Allemand R (2012) Effects of deltamethrin on the specific discrimination of sex pheromones in two sympatric Trichogramma species. Ecotoxicol Environ Saf 84:32–38

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • Dias-Santagata D, Fulga TA, Duttaroy A, Feany MB (2007) Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J Clin Invest 117(1):236–245

    Article  CAS  Google Scholar 

  • Durand N et al (2010a) Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant. PLoS One 5:e15026

    Article  CAS  Google Scholar 

  • Durand N et al (2011) Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS One 6(12):e29147

    Article  CAS  Google Scholar 

  • Durand N et al (2010b) A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis. Insect Mol Biol 19(1):87–97

    Article  CAS  Google Scholar 

  • Enayati AA, MotevalliHaghi F (2007) Biochemistry of pyrethroid resistance in German cockroach (Dictyoptera, Blatellidae) from hospitals of Sari, Iran. Iran Biomed J 11:251–258

    CAS  Google Scholar 

  • Fan J, Francis F, Liu Y, Chen JL, Cheng DF (2011) An overview of odorant-binding protein functions in insect peripheral olfactory reception. J Genetics and Molecular Research 10(4):3056–3069

    Article  CAS  Google Scholar 

  • Farnsworth CA et al (2010) Esterase-based metabolic resistance to insecticides in heliothine and spodopteran pests. J Pestic Sci 35:275e289

    Article  Google Scholar 

  • Gebhardt M (2004) In vivo-application of anti-proctolin-antiserum affects antennal flight posture in crickets. J Comp Physiol A 190:359–364

    Article  CAS  Google Scholar 

  • Goulding AT, Shelley LK, Ross PS, Kennedy CJ (2013) Reduction in swimming performance in juvenile rainbow trout (Oncorhynchus mykiss) following sublethal exposure to pyrethroid insecticides. Comp Biochem Physiol C Toxicol Pharmacol 157(3):280–286

    Article  CAS  Google Scholar 

  • Grolli S, Merli E, Conti V, Scaltriti E, Ramoni R (2006) Odorant binding protein has the biochemical properties of a scavenger for 4-hydroxy-2-nonenal in mammalian nasal mucosa. FEBS Journal 273:5131–5142

    Article  CAS  Google Scholar 

  • Guedes RN, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70(5):690–697

    Article  CAS  Google Scholar 

  • Guedes NMP, Tolledo J, Corrêa AS, Guedes RNC (2010) Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais. J Appl Entomol 134:142–148

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Halm MP, Rortais A, Arnold G, Taséi JN, Rault S (2006) New risk assessment approach for systemic insecticides: the case of honey bees and imidacloprid (Gaucho). Environ Sci Technol 40(7):2448–2454

    Article  CAS  Google Scholar 

  • Hardin M, Benrey B, Coll M, Lamp W, Roderick G et al (1995) Arthropod pest resistance—an overview of potential mechanisms. Crop Protect 14:3–18

    Article  Google Scholar 

  • Haug G, Hoffman H (1990) Synthetic pyrethroid insecticides: structures and properties. In: Chemistry of Plant Protection, vol 4. Springer, New York, NY

    Google Scholar 

  • Hinks CF, Byers JR (1976) Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). V. Rearing procedures and life cycles of 36 species. Can Entomol 108:1345–1357

    Article  Google Scholar 

  • Jagadeshwaran U, Vijayan VA (2009) Biochemical characterization of deltamethrin resistance in a laboratory-selected strain of Aedes aegypti. Parasitol Res 104:1431–1438

    Article  Google Scholar 

  • Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen P-C (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci. 1147:61–69. doi:10.1196/annals.1427.036

  • Kadala A, Charreton M, Jakob I, LeConte Y, Collet C (2011) A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons. Neurotoxicology 32:320–330

    Article  CAS  Google Scholar 

  • Kaissling K-E (1996) Peripheral mechanisms of pheromone reception in moths. Chem Senses 21:257–268

    Article  CAS  Google Scholar 

  • Keil TA, Steinbrecht RA (1987) Diffusion barriers in silkmoth sensory epithelia: application of lanthanum tracer to olfactory sensilla of Antheraea polyphemus and Bombyx mori. Tissue Cell 19(1):119–134

    Article  CAS  Google Scholar 

  • Ketterman AJ, Saisawang C, Wongsantichon J (2011) Insect glutathione transferases drug. Metabolism Reviews 43(2):253–265

    Article  CAS  Google Scholar 

  • Lee CY, Yap HH, Chong NL (1998) Sublethal effects of deltamethrin and propoxur on longevity and reproduction of German cockroaches, Blattella germanica. Entomol Exp Appl 89:137–145

    Article  CAS  Google Scholar 

  • Legeai F et al (2011) An expressed sequence tag collection from the male antennae of the noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics 12:86

    Article  CAS  Google Scholar 

  • Linn Jr CE, Roelofs WL (1984) Sublethal effects of neuroactive compounds on pheromone response thresholds in male oriental fruit moths. Arch Insect Biochem Physiol 1:331–344

  • Linn Jr CE, Roelofs WL (1985) Multiple effects of octopamine and chlordimeform on pheromone response thresholds in the cabbage looper moth, Trichoplusia ni. Pestic Sci 16:445–446

  • Lucas P, Renou M (1992) Electrophysiological study of the effects of deltamethrin, bioresmethrin, and DDT on the activity of pheromone receptor neurons in 2 moth species. Pestic Biochem Phys 43:103–115

    Article  CAS  Google Scholar 

  • Luna-López A, González-Puertos VY, Romero-Ontiveros J, Ventura-Gallegos JL, Zentella A, Gomez-Quiroz LE, Königsberg M (2013) A non canonical NF-κB pathway through the p50 subunit regulates Bcl-2 overexpression during anoxidative-conditioning hormesis response. Free Radical Biology and Medicine 63:41–50

    Article  Google Scholar 

  • Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–26

  • Marini AM, Jiang H, Pan H, Wu X, Lipsky RH (2008) Hormesis: a promising strategy to sustain endogenous neuronal survival pathways against neurodegenerative disorders. Ageing Res Rev 7:21–33

    Article  CAS  Google Scholar 

  • Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29(11):632–639

  • Maxim L, van der Sluijs JP (2007) Uncertainty: cause or effect of stake holders’ debates?: analysis of a case study: the risk for honeybees of the insecticide Gaucho H. Science of The Total Environment 376:1–17

    Article  CAS  Google Scholar 

  • Miles M, Lysandrou M (2007) Evidence for negative cross resistance to insecticides in field collected Spodoptera littoralis (Boisd.) from Lebanon in laboratory bioassays. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67(3):665–669

    Google Scholar 

  • Minn AL et al (2005) Characterization of microsomal cytochrome P450-dependent monooxygenases in the rat olfactory mucosa. Drug Metab Dispos 33(8):1229–1237

    Article  CAS  Google Scholar 

  • Misra JR, Horner MA, Lam G, Thummel CS (2011) Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev 25:1796–1806

    Article  CAS  Google Scholar 

  • Misra JR, Lam G, Thummel CS (2013) Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect Biochem Mol Biol 43:1116–1124

    Article  CAS  Google Scholar 

  • Mitchell GB, Clark ME, Siwicky M, Caswell JL (2008) Stress alters the cellular and proteomic compartments of bovine bronchoalveolar lavage fluid. Vet Immunol Immunopathol 125:111–125

    Article  CAS  Google Scholar 

  • Morse J (1998) Agricultural implications of pesticide-induced hormesis of insects and mites. Hum Exp Toxicol 17:266–269

    Article  CAS  Google Scholar 

  • Munoz L, Bosch P, Batllori L, Rosell G, Bosch D, Guerrero A, Avillad J (2011) Synthesis of allylic trifluoromethyl ketones and their activity as inhibitors of the sex pheromone of the leopardmoth, Zeuzera pyrina L. (Lepidoptera: Cossidae). Pest Manag Sci 67:956–964

    Article  CAS  Google Scholar 

  • Murugaiyah V, Mattson MP (2015) Neurohormetic phytochemicals: an evolutionary bioenergetic perspective. Neurochem Int 89:271–280

  • OEPP/EPPO (2003) Environmental risk assessment scheme for plant protection products. Bulletin OEPP/EPPO 33:115–129

    Article  Google Scholar 

  • Pevsner J, Hou V, Snowman AM, Snyder SH (1990) Odorant-binding protein. Characterization of ligand binding. J Biol Chem 265:6118–6125

    CAS  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  Google Scholar 

  • Pottier MA et al (2012) Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis. Insect Mol Biol 21(6):568–580

    Article  CAS  Google Scholar 

  • Reddy MS, Rao KV (1988) Modulation of carbohydrate metabolism in the selected tissues of marine prawn, Penaeus indicus (H. Milne Edwards), under phosphamidon-induced stress. Ecotoxicol Environ Saf 15(2):212–220

    Article  CAS  Google Scholar 

  • Riskallah MR, Abd-Elghafar SF, Abo-Elghar MR, Nassar ME (2006) Development of resistance and cross-resistance in fenvalerate and deltamethrin selected strains of Spodoptera littoralis (Boisd.). Pesticide Science 14(5):508–512

    Article  Google Scholar 

  • Rizwan-ul-Haq M, Gong L, Hu M, Luo J (2011) Apolipophorin III and transmission electron microscopy as toxicity indicators for harmaline and tea saponin in Spodoptera exigua (Noctuidae: Lepidoptera). Chemosphere 85(6):995–1001

    Article  CAS  Google Scholar 

  • Roelofs WL, Comeau A (1969) Sex pheromone specificity: taxonomic and evolutionary aspects in Lepidoptera. Science 165:398–400

    Article  CAS  Google Scholar 

  • Salgueiro WG, Xavier MCDF, Duarte LFB, Câmara DF, Fagundez DA, Soares ATG, Perin G, Alves D, Avila DS (2014) Direct synthesis of 4-organylsulfenyl-7-chloro quinolines and their toxicological and pharmacological activities in Caenorhabditis elegans. Eur J Med Chem 75:448–459

    Article  CAS  Google Scholar 

  • Sharma A et al (2012) Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J Hazard Mater 221–222:275–287

    Article  Google Scholar 

  • Siaussat D, Chertemps T, Maibeche-Coisne M (2014) In: Chandrasekar R, Tyagi BK, Zhong Zheng G, Reeck GR (eds) Detoxication, stress and immune responses in insect antenna: new insights from transcriptomics. Short views on insect biochemistry and molecular biology, vol 1. International Book Mission©, Academic Publisher, South India, pp 75–98

    Google Scholar 

  • Simon P (2003) Q-gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440

    Article  CAS  Google Scholar 

  • Soderlund DM (2004) Pyrethroids and sodium channels. In: Beadle DJ, Mellor IR, Usherwood PNR (eds) Neurotox’ 03: neurotoxicological targets from functional genomics and proteomics. Society of Chemical Industry, London, p 79e86

    Google Scholar 

  • Son TG, Camandola S, Mattson MP (2008) Hormetic dietary phytochemicals. Neuromolecular Med 10(4):236–246. doi:10.1007/s12017-008-8037-y

  • Strotmann J, Breer H (2011) Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem Cell Biol 136:357–369

    Article  CAS  Google Scholar 

  • Sukontason K et al (2005) Susceptibility of Musca domestica and Chrysomya megacephala to permethrin and deltamethrin in Thailand. J Med Entomol 42(5):812–814

    Article  CAS  Google Scholar 

  • Surh Y-J (2011) Xenohormesis mechanisms underlying chemopreventive effects of some dietary phytochemicals. Ann NY Acad Sci 1229:1–6

  • Sykiotis GP, Bohmann D (2008) Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell 14:76–85

    Article  CAS  Google Scholar 

  • Tamaki Y, Yushima T (1974) Sex pheromone of the cotton leafworm, Spodoptera littoralis. J Insect Physiol 20:1005–1014

    Article  CAS  Google Scholar 

  • Tower J (2015) Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 576:17–31

    Article  CAS  Google Scholar 

  • Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol 46:355–362

    Article  CAS  Google Scholar 

  • Tricoire-Leignel H, Thany SH, Gadenne C, Anton S (2012) Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect. Front Physiol 3:1–6

    Article  Google Scholar 

  • Vontas JG, Small GJ, Nikou DC, Ranson H, Hemingway J (2002) Purification, molecular cloning, and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown plant hopper, Nilaparvata lugens. Biochem J 362:329–337

    Article  CAS  Google Scholar 

  • Wang G, Huang X, Wei H, Fadamiro HY (2011) Sublethal effects of larval exposure to indoxacarb on reproductive activities of the diamond back moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Pest Biochem Phys 101:227–231

    Article  CAS  Google Scholar 

  • Wei H, Du J (2004) Sublethal effects of larval treatment with deltamethrin on moth sex pheromone communication system of the Asian corn borer, Ostrinia furnacalis. Pest Biochem Phys 80:12–20

    Article  CAS  Google Scholar 

  • Wei HY, Huang YP, Du JW (2004) Sex pheromone communication of tobacco cutworm moths survived after treating the larvae with selected insecticide. J Chem Ecol 30:1457Y1466

    Article  Google Scholar 

  • WHO (1989) Deltamethrin health and safety guide N°30. IPCS International Programme On Chemical Safety. World Health Organization, Geneva, ISBN 924154351 5

    Google Scholar 

  • Yang ZH, Du JW (2003) Effects of sublethal deltamethrin on the chemical communication system and PBAN activity of Asian corn borer, Ostrinia furnacalis (Güenee). J Chem Ecol 29(7):1611–1619

    Article  CAS  Google Scholar 

  • Yuk J, Simpson MJ, Simpson AJ (2012) Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using 1H NMR-based earthworm metabolomics. Ecotoxicology 21(5):1301–1313

    Article  CAS  Google Scholar 

  • Zhou H, Du J, Huang Y (2005) Effects of sublethal doses of malathion on responses to sex pheromones by male Asian corn borer moths, Ostrinia furnacalis (guenée). J Chem Ecol 31:1645–1656

    Article  CAS  Google Scholar 

  • Zhou X, Sheng C, Li M, Wana H, Liu D, Qiu X (2010) Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm Helicoverpa armigera. Pesticide Biochemistry and Physiology 97:209–213

    Article  CAS  Google Scholar 

  • Zhu F et al (2012) RNA Interference of NADPH-Cytochrome P450 Reductase Results in Reduced Insecticide Resistance in the Bed Bug, Cimex lectularius. PLoS One 7(2):e31037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Matthieu Dacher for his assistance in the statistical analyses, Dr. Emmanuelle Jacquin-Joly for access to the S. littoralis EST database, and Dr. Didier Rochat for helpful commentaries regarding this study. Lisa Lalouette was supported by a DIM ASTREA (Région Ile de France) post-doctoral fellowship. Marie-Anne Pottier and all experiments were supported by an “EMERGENCE” grant from the University Pierre and Marie Curie (UPMC-Paris 6) and PHEROTOX grant from ANR BIOADAPT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Siaussat.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

Table S1. Structural characteristics and functional protein classification identified in the antennal proteome of S. littoralis following deltamethrin exposure. Spot number corresponds to the protein spot number. The theoretical molecular weight (MW) and isoelectric point (pI) of the identified proteins were retrieved from the protein databases of NCBInr and Swiss prot. Experimental MW and pI values were calculated with internal standard molecular mass markers. Peptide count is the number of matching peptides. Protein Score C.I.% is the confidence interval of identified proteins calculated from MS data. Total ion C.I.% indicates the confidence of the identified protein calculated from MS/MS data. In both cases, scores above 95% were significant. The protein expression ratios between samples of deltamethrin-treated and control insects were calculated by comparative analysis of all spots of interest. (PDF 204 kb)

Esm 2

Table S2. Primer nucleotide sequences used in PCR for amplification of reference genes and targeted sequences in S. littoralis. Accession number, gene name, and sequences of the forward and reverse primer were verified for each gene. Specific qPCR primers were designed using Eprimer3 software. (PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalouette, L., Pottier, MA., Wycke, MA. et al. Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect. Environ Sci Pollut Res 23, 3073–3085 (2016). https://doi.org/10.1007/s11356-015-5923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5923-3

Keywords

Navigation