Skip to main content
Log in

In vivo-application of anti-proctolin-antiserum affects antennal flight posture in crickets

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Tethered crickets flying in a wind tunnel adopt a characteristic posture in which the antennae are pointed in parallel and anteriorly into the headwind. Although the firing rates of antennal motoneurons are largely reduced after the start of a flight sequence, the associated postural changes of the antennae are small. It is hypothesised that proctolin, which is present in antennal motoneurons, stabilises the prolonged antennal forward position. To test this hypothesis, proctolin was blocked by anti-proctolin antiserum injections into one antennal base in otherwise intact behaving crickets. The antiserum quickly led to prolonged backward deflections of the treated antennae in 65% of cases. It then took more than one hour for the deflected posture to revert to a normal flight posture. It appears that proctolin is necessary to produce muscle tension large enough to hold the antennae in a forward position and to compensate for the headwind drag. Proctolin, therefore, acts to generate force with reduced electrical activity of motoneurons and muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b

Similar content being viewed by others

References

  • Allgäuer C, Honegger H-W (1993) The antennal motor system of crickets: modulation of muscle contractions by a common inhibitor, DUM neurons, and proctolin. J Comp Physiol A 173:485–494

    Google Scholar 

  • Baines RA, Downer RG (1992) Comparative studies on the mode of action of proctolin and phorbol-12,13-dibutyrate in their ability to contract the locust mandibular closer muscle. Arch Insect Biochem Physiol 20:215–229

    CAS  PubMed  Google Scholar 

  • Baines RA, Walther C, Hinton JM, Osborne RH, Konopinska D (1996) Selective activity of a proctolin analogue reveals the existence of two receptor subtypes. J Neurophysiol 75:2647–2650

    CAS  PubMed  Google Scholar 

  • Bartos M, Honegger H-W (1997) Impact of motor activity and antennal mechanosensory input on the intensity of proctolin-like immunoreactivity in antennal motoneurons of crickets (Gryllus bimaculatus). J Comp Physiol A 181:59–70

    Article  Google Scholar 

  • Bartos M, Allgäuer C, Eckert M, Honegger H-W (1994) The antennal motor system of crickets: proctolin in slow and fast motoneurons as revealed by double labelling. Eur J Neurosci 6:825–836

    CAS  PubMed  Google Scholar 

  • Bartos M, Lauer B, Honegger H-W (1995) Colocalisation of glutamate and proctolin in antennal motoneurons: an immunocytochemical double-labelling study in crickets. In: Elsner N, Menzel R (eds) Proc 23rd Göttingen Neurobiol Conf, vol II, p 60

  • Bauer CK (1991) Modulatory action of proctolin in the locust (Locusta migratoria) antennal motor system. J Insect Physiol 9:663–673

    Article  Google Scholar 

  • Belanger JH, Orchard I (1993) The locust ovipositor opener muscle: proctolinergic central and peripheral neuromodulation in a centrally driven motor system. J Exp Biol 174:343–362

    Google Scholar 

  • Bishop CA, Wine JJ, Nagy F, O’Shea MR (1987) Physiological consequences of a peptide cotransmitter in a crayfish nerve-muscle preparation. J Neurosci 7:1769–1779

    CAS  PubMed  Google Scholar 

  • Bishop CA, Krouse ME, Wine JJ (1991) Peptide cotransmitter potentiates calcium channel activity in crayfish skeletal muscle. J Neurosci 11:269–276

    CAS  PubMed  Google Scholar 

  • Bräunig P, Allgäuer C, Honegger H-W (1990) Suboesophageal DUM neurons are part of the antennal motor system in locusts and crickets. Experientia 46:259–261

    Google Scholar 

  • Brüstle B, Kreissl S, Mykles DL, Rathmayer W (2001) The neuropeptide proctolin induces phosphorylation associated with the thin filament in crustacean muscle. J Exp Biol 204:2627–2635

    PubMed  Google Scholar 

  • Erxleben CF, deSantis A, Rathmayer W (1995) Effects of proctolin on contractions, membrane resistance, and non-voltage-dependent sarcolemmal ion channels in crustacean muscle fibers. J Neurosci 15:4356–4369

    CAS  PubMed  Google Scholar 

  • Fouad K, Dietz V, Schwab M (2001) Improving axonal growth and functional recovery after experimental spinal cord injury by neutralizing myelin associated inhibitors. Brain Res Rev 36:204–212

    Article  CAS  PubMed  Google Scholar 

  • Gewecke M (1972) Antennen und Stirn-Scheitelhaare von Locusta migratoria L. als Luftströmungs-Sinnesorgane bei der Flugsteuerung. J Comp Physiol 103:79–95

    Google Scholar 

  • Heppner FL, Musahl C, Arrighi I, Klein MA, Rülicke T, Oesch B, Zinkernagel RM, Kalinke U, Aguzzi A (2001) Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294:178–182

    Article  CAS  PubMed  Google Scholar 

  • Honegger H-W, Allgäuer C, Klepsch U, Welker J (1990) Morphology of antennal motoneurons in the brains of two cricktes, Gryllus bimaculatus and Gryllus campestris. J Comp Neurol 191:256–268

    Google Scholar 

  • Honegger H-W, Bartos M, Gramm T, Gebhardt M (1995) Peripheral modulation and plasticity of antennal movements in crickets. In: Pfannenstiel H-D (ed) Proceedings of the German Zoological Society 88th meeting in Kaiserslautern. Fischer, Stuttgart, pp 129–137

  • Horseman BG, Gebhardt MJ, Honegger HW (1997) Involvement of suboesophageal and thoracic ganglia in the control of antennal movements in crickets. J Comp Physiol A 181:195–204

    Article  Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Tierpsychol 12:12–48

    Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirns bei der Fortbewegung und der Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132

    Google Scholar 

  • Konopinska D, Rosinski G (1999) Proctolin, an insect neuropeptide. J Peptide Sci 5:533–546

    Article  CAS  Google Scholar 

  • Kutsch W, Camhi J, Sumbre G (1994) Close encounters among flying locusts produce wing-beat coupling. J Comp Physiol A 174:643–649

    Google Scholar 

  • Lange AB (2002) A review of the involvement of proctolin as a cotransmitter and local neurohormone in the oviduct of the locust, Locusta migratoria. Peptides 23:2063–2070

    Article  CAS  PubMed  Google Scholar 

  • Miles CI, May ML, Holbrook EH, Hoy RR (1992) Multisegmental analysis of acoustic startle in the flying cricket (Teleogryllus oceanicus): kinematics and electromyography. J Exp Biol 169:19–36

    CAS  PubMed  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. TINS 24:146–154

    Article  CAS  PubMed  Google Scholar 

  • Orchard I, Belanger JH Lange AB (1989) Proctolin: a review with emphasis on insects. J Neurobiol 20:470–496

    CAS  PubMed  Google Scholar 

  • Pasztor VM, Golas LB (1993) The modulatory effects of serotonin, neuropeptide F1 and proctolin on the receptor muscles of of the lobster abdominal stretch receptor and their exoskeletal muscle homologues. J Exp Biol 174:363–374

    CAS  Google Scholar 

  • Pflüger H-J (1999) Neuromodulation during motor development and behavior. Curr Opin Neurobiol 9:683–689

    Article  PubMed  Google Scholar 

  • Rathmayer W, Erxleben C, Djokaj S, Gaydukov A, Kreissl S, Weiss T (2001) Antagonistic modulation of neuromuscular parameters in crustaceans by the peptides proctolin and allatostatin, contained in identified motor neurons. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin Heidelberg New York, pp 2–19

  • Saager F, Gewecke M (1989) Antennal reflexes in the desert locust, Schistocerca geregaria. J Exp Biol 147:519–532

    Google Scholar 

  • Sandeman DC (1968) A sensitive position measuring device for biological systems. Comp Biochem Physiol 24:635–638

    CAS  PubMed  Google Scholar 

  • Skiebe P (2001) Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system: J Exp Biol 204:2035–2048

    Google Scholar 

  • Walther C, Zittlau KE, Murck H, Voigt K (1998) Resting membrane properties of locust muscle and their modulation. I. Actions of the neuropeptides YGGFMRFamide and proctolin. J Neurophysiol 80:771–784

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am deeply grateful to Dr. Hans Agricola, Jena, who kindly left his anti-proctolin antiserum (BMFT project 0316919 A) to me. He also provided valuable comments on the manuscript. I would like to thank Dr. Hans-Willi Honegger, Nashville, and Geoffrey Manley, Ph.D., Garching, for fruitful discussions and for improving this article. Some injection experiments were performed by D. Brünnert and I. Schiöberg as part of their advanced zoology practical in Garching. I thank two anonymous referees who helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gebhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebhardt, M. In vivo-application of anti-proctolin-antiserum affects antennal flight posture in crickets. J Comp Physiol A 190, 359–364 (2004). https://doi.org/10.1007/s00359-004-0500-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0500-0

Keywords

Navigation