Skip to main content

Advertisement

Log in

Comparative sensitivity among early life stages of the South American toad to cypermethrin-based pesticide

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cypermethrin is one of the most widely used pesticides due to its low mammalian and bird toxicity, but it is extremely toxic to aquatic organisms. The aim of the present study was to evaluate the toxicity of a commercial formulation of cypermethrin on the embryo–larval development of Rhinella arenarum. An ecological risk assessment based on the hazard quotient (HQ) approach was performed. The results showed that cypermethrin toxicity was stage-dependent and dramatically increased during the larval period. Thus, larvae were more sensitive than embryos, obtaining at the end of the experiment a 336-h median lethal concentration (LC50) of 0.65 μg cypermethrin/L. Cypermethrin exposure caused morphological abnormalities such as general underdevelopment, edema, gill malformations, and behavioral alterations as hyperkinesia and spasmodic contractions. The 168-h teratogenic index was 5, implying a high risk for embryos to be malformed in the absence of significant embryonic lethality. Based on the results of the toxicity effects and the ecological risk assessed (HQ for chronic exposure > level of concern), this pesticide should be considered as a direct (effects on survival) or indirect (severe sublethal effects) risk for conservation purposes of this amphibian in agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostini MG, Natale GS, Ronco AE (2010) Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicology 19(8):1545–1550

    Article  CAS  Google Scholar 

  • American Public Health Association (2005) Standard methods for the examination of water and wastewater, 15th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Aronzon CM, Sandoval MT, Herkovits J, Pérez-Coll CS (2011) Stage-dependent toxicity of 2,4-dichlorophenoxyacetic on the embryonic development of a South American toad, Rhinella arenarum. Environ Toxicol 26(4):373–381

    Article  CAS  Google Scholar 

  • ASTM (American Society for Testing and Materials) (1993) Standard guide for conducting the frog embryo teratogenesis assay—Xenopus (FETAX). In Standards on Aquatic Toxicology and Hazard Evaluation. Philadelphia, PA, pp 1199–1209

    Google Scholar 

  • Bantle JA, Dumont JN, Finch RA, Linder G, Fort DJ (1998) Atlas of abnormalities. A guide for the performance of FETAX, 2nd edn. Oklahoma State University, Stillwater, Oklahoma

    Google Scholar 

  • Berrill M, Bertram S, Wilson A, Louis S, Brigham D, Stromberg C (1993) Lethal and sublethal impacts of pyrethroid insecticides on amphibian embryos and tadpoles. Environ Toxicol Chem 12:525–539

    Article  CAS  Google Scholar 

  • Biga LM, Blaustein AR (2013) Variations in lethal and sublethal effects of cypermethrin among aquatic stages and species of anuran amphibians. Arch Environ Contam Toxicol 47(4):489–495

    Google Scholar 

  • Boyer R, Grue CE (1995) The need for water quality criteria for frogs. Environ Health Perspect 103(4):352–357

    Article  CAS  Google Scholar 

  • CASAFE (Cámara Argentina de Sanidad Agropecuaria y Fertilizantes) (2010) Mercado argentino de productos fitosanitarios 2010., http://www.casafe.org/pdf/estadisticas/Informe%20Mercado%20Fitosanitarios%202010.pdf

    Google Scholar 

  • Casco VH, Marín L, Vergara MN, Lajmanovich RC, Izaguirre MF, Peralta Soler A (2006) Apoptotic cell death in the central nervous system of Bufo arenarum tadpoles induced by cypermethrin. Cell Biol Toxicol 22(3):199–211

    Article  CAS  Google Scholar 

  • David M, Marigoudar SR, Patil VK, Halappa R (2012) Behavioral, morphological deformities and biomarkers of oxidative damage as indicators of sublethal cypermethrin intoxication on the tadpoles of D. melanostictus (Schneider, 1799). Pestic Biochem Physiol 103:127–134

    Article  CAS  Google Scholar 

  • Del Conte E, Sirlin L (1951) The first stages of Bufo arenarum development. Acta Zool Lilloana 12:495–499

    Google Scholar 

  • Edwards R, Millburn P, Huston DH (1987) The toxicity and metabolism of the pyrethroids cis-trans-cypermethrin in rainbow trout, Salmo gairneri. Xenobiotica 17:1175–1193

    Article  CAS  Google Scholar 

  • Ghodageri MG, Pancharatna K (2011) Morphological and behavioral alterations induced by endocrine disrupters in amphibian tadpoles. Toxicol Environ Chem 93(10):2012–2021

    Article  CAS  Google Scholar 

  • Glickman AH, Weitman SD, Lech JJ (1982) Differential toxicity of trans-permethrin in rainbow trout and mice. I. Role of biotransformation. Toxicol Appl Pharmacol 66(2):153–161

    Article  CAS  Google Scholar 

  • Grajeda CP, Ramirez MVM, Gonzalez ME (2004) Vitamin C protects against in vitro cytotoxicity of cypermethrin in rat hepatocytes. Toxicol In Vitro 18:13–19

    Article  CAS  Google Scholar 

  • Haya K (1989) Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem 8:381–392

    Article  CAS  Google Scholar 

  • Hayes T, Haston K, Tsui M, Hoang A, Haefelle C, Vonk A (2003) Atrazine induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): late filed evidence. Environ Health Perspect 111:568–575

    Article  CAS  Google Scholar 

  • Herkovits J, Perez-Coll CS (1999) Bioensayos para test de toxicidad con embriones de anfibio (“Anfitox”). Ing Sanitaria y Ambiental 42:24–30

    Google Scholar 

  • Herkovits J, Perez-Coll CS (2003) AMPHITOX: a customized set of toxicity tests employing amphibian embryos. Symposium on multiple stressor effects in relation to declining amphibian populations. In: Linder GL, Crest S, Sparling D, Little EE (eds) Multiple stressor effects in relation to declining amphibian populations. ASTM International STP 1443, USA, pp 46–60

    Chapter  Google Scholar 

  • Herkovits J, Pérez-Coll C, Herkovits FD (2002) Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test (AMPHITOX). Environ Pollut 116(1):177–183

    Article  CAS  Google Scholar 

  • Izaguirre MF, Lajmanovich RC, Peltzer PM, Peralta Soler A, Casco VH (2000) Cypermethrin-induced apoptosis in the telencephalon of Physalaemus biligonigerus tadpoles (Anura: Leptodactylidae). Bull Environ Contam Toxicol 65(4):501–507

    Article  CAS  Google Scholar 

  • Jergentz S, Mugni H, Bonetto C, Schulz R (2005) Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere 61(6):817–826

    Article  CAS  Google Scholar 

  • Kamrin MA (2000) Pesticide profiles toxicity. Environment impact and fate. CRC, Boca Raton

    Google Scholar 

  • Little EE, Archeski RD, Flerov BA, Kozlovskaya VI (1990) Behavioral indicators of sublethal toxicity in rainbow trout. Arch Environ Contam Toxicol 19(3):380–385

    Article  CAS  Google Scholar 

  • Mann RM, Bidwell JR (1999) The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Arch Environ Contam Toxicol 36(2):193–199

    Article  CAS  Google Scholar 

  • Marino D, Ronco EA (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75(4):820–826

    Article  CAS  Google Scholar 

  • Mishra D, Srivastava SK, Srivastava AK (2005) Effects of the insecticide cypermethrin on plasma calcium and ultimobranchial gland of a teleost, Heteropneustes fossilis. Ecotoxicol Environ Saf 60:193–197

    Article  CAS  Google Scholar 

  • Narahashi T (2000) Neuroreceptors and ion channels as the basis for drug action: past, present, and future. J Pharmacol Exp Ther 294:1–26

    CAS  Google Scholar 

  • Oros DR, Werner I (2005) Pyrethroid insecticides: an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin delta and Central Valley. White Paper for the Interagency Ecological Program. SFEI Contribution 415. San Francisco Estuary Institute, Oakland, CA, USA

    Google Scholar 

  • Paulov S (1990) Potential impact of pyrethroids (cypermethrin) on the model amphibians (Rana temporaria). Biologia (Bratislava) 45:133–139

    Google Scholar 

  • Pisanó A (1956) Efficienza funzionale e structura dell’ ipofisi di anfibio. Arch Zool Ital 42:221–227

    Google Scholar 

  • Relyea RA (2009) A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159(2):363–376

    Article  Google Scholar 

  • Saha S, Kaviraj A (2008) Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms. Bull Environ Contam Toxicol 80:49–52

    Article  CAS  Google Scholar 

  • Siegfried BD (1993) Comparative toxicity of pyrethroid insecticides to terrestrial and aquatic insects. Environ Toxicol Chem 12(9):1683–1689

    Article  CAS  Google Scholar 

  • Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59

    Article  CAS  Google Scholar 

  • Suvetha L, Ramesh M, Saravanan M (2010) Influence of cypermethrin toxicity on ionic regulation and gill Na (+)/K (+)-ATPase activity of a freshwater teleost fish Cyprinus carpio. Environ Toxicol Pharmacol 29(1):44–49

    Article  CAS  Google Scholar 

  • Svartz GV, Pérez-Coll CS (2013) Comparative toxicity of cypermethrin and a commercial formulation on Rhinella arenarum larval development (Anura: Bufonidae). Int J Environ Health 6(4):320–329

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency) (1988) Users guide for a computer program for PROBIT analysis of data from acute and short-term chronic toxicity test with aquatic organisms. Biological Methods, Environmental Monitoring and Support, Laboratory, Cincinnati, OH, USA

    Google Scholar 

  • USEPA (US Environmental Protection Agency) (1989) Pesticide fact sheet number 199: cypermethrin. US EPA, Office of Pesticide Programs, Registration Div, Washington, DC

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1998) Guidelines for ecological risk assessment. Ecological risk assessment step 2. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (US Environmental Protection Agency) (2008) Reregistration eligibility decision for cypermethrin (revised 1/14/08). OPP/2005/0293. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vaalavirta L, Tahti H (1995) Astrocyte membrane Na+, K (+)-ATPase and Mg (2+)-ATPase as targets of organic solvent impact. Life Sci 57:2223–2230

    Article  CAS  Google Scholar 

  • Vijverberg HP, van den Bercken J (1990) Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol 21:105–126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Gabriela V. Svartz, Carolina M. Aronzon and Cristina S. Pérez Coll are members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and Universidad Nacional de San Martín (UNSAM), Argentina. We wish to thank Instituto Massone S.A. for providing the human chorionic gonadotropin and Fix Sudamericana Laboratory for the determinations of cypermethrin in water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Pérez Coll.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svartz, G., Aronzon, C. & Pérez Coll, C. Comparative sensitivity among early life stages of the South American toad to cypermethrin-based pesticide. Environ Sci Pollut Res 23, 2906–2913 (2016). https://doi.org/10.1007/s11356-015-5547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5547-7

Keywords

Navigation