Skip to main content
Log in

Characterization of H2S removal and microbial community in landfill cover soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

H2S is a source of odors at landfills and poses a threat to the surrounding environment and public health. In this work, compared with a usual landfill cover soil (LCS), H2S removal and biotransformation were characterized in waste biocover soil (WBS), an alternative landfill cover material. With the input of landfill gas (LFG), the gas concentrations of CH4, CO2, O2, and H2S, microbial community and activity in landfill covers changed with time. Compared with LCS, lower CH4 and H2S concentrations were detected in the WBS. The potential sulfur-oxidizing rate and sulfate-reducing rate as well as the contents of acid-volatile sulfide, SO4 2−, and total sulfur in the WBS and LCS were all increased with the input of LFG. After exposure to LFG for 35 days, the sulfur-oxidizing rate of the bottom layer of the WBS reached 82.5 μmol g dry weight (d.w.)−1 day−1, which was 4.3-5.4 times of that of LCS. H2S-S was mainly deposited in the soil covers, while it escaped from landfills to the atmosphere. The adsorption, absorption, and biotransformation of H2S could lead to the decrease in the pH values of landfill covers; especially, in the LCS with low pH buffer capacity, the pH value of the bottom layer dropped to below 4. Pyrosequencing of 16S ribosomal RNA (rRNA) gene showed that the known sulfur-metabolizing bacteria Ochrobactrum, Paracoccus, Comamonas, Pseudomonas, and Acinetobacter dominated in the WBS and LCS. Among them, Comamonas and Acinetobacter might play an important role in the metabolism of H2S in the WBS. These findings are helpful to understand sulfur bioconversion process in landfill covers and to develop techniques for controlling odor pollution at landfills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bao SD (2000) Soil agro-chemistry analysis. Chinese Agriculture Press, Beijing

    Google Scholar 

  • Barlaz MA, Green RB, Chanton JP, Goldsmith CD, Hater GR (2004) Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ Sci Technol 38:4891–4899

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  Google Scholar 

  • Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42:6791–6799

    Article  CAS  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Chi ZF, Lu WJ, Li H, Wang HT (2012) Dynamics of CH4 oxidation in landfill biocover soil: effect of O2/CH4 ratio on CH4 metabolism. Environ Pollut 170:8–14

    Article  CAS  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    Article  CAS  Google Scholar 

  • Dincer F, Odabasi M, Muezzinoglu A (2006) Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. J Chromatogr A 1122:222–229

    Article  CAS  Google Scholar 

  • Ding Y, Cai C, Hu B, Xu Y, Zheng X, Chen Y, Wu W (2012) Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China. Waste Manag 32:317–326

    Article  CAS  Google Scholar 

  • Duan HQ, Koe LCC, Yan R (2005) Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon: reactor set up and performance evaluation. Appl Microbiol Biotechnol 67:143–149

    Article  CAS  Google Scholar 

  • Duan HQ, Yan R, Koe LCC, Wang XL (2007) Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration. Chemosphere 66:1684–1691

    Article  CAS  Google Scholar 

  • Euzeby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592

    Article  CAS  Google Scholar 

  • Frierich CG, Quentmeier A, Bardischewsky F, Rother D, Orawski G, Hellwig P, Fischer J (2008) Redox control of chemotrophic sulfur oxidation of Paracoccus pantotrophus. In: Dahl C, Frierich CG (eds) Microbial sulfur metabolism. Springer, Heidelberg, pp 139–150

    Chapter  Google Scholar 

  • Haaijer SCM, Van der Welle MEW, Schmid MC, Lamers LPM, Jetten MSM, Op den Camp HJM (2006) Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals. FEMS Microbiol Ecol 58:439–448

    Article  CAS  Google Scholar 

  • He R, Xia FF, Wang J, Pan CL, Fang CR (2011) Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover. J Hazard Mater 186:773–778

    Article  CAS  Google Scholar 

  • He R, Xia FF, Bai Y, Wang J, Shen DS (2012) Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alterative landfill cover. J Hazard Mater 217:67–75

    Article  Google Scholar 

  • Horinouchi M, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp. strain 20B. FEMS Microbiol Lett 155:99–105

    Article  CAS  Google Scholar 

  • Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res 26:33–46

    Article  CAS  Google Scholar 

  • Jiang X, Yan R, Tay JH (2008) Reusing H2S-exhausted carbon as packing material for odor biofiltration. Chemosphere 73:698–704

    Article  CAS  Google Scholar 

  • Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107

    Article  CAS  Google Scholar 

  • Kim KH, Choi YJ, Jeon EC, Sunwoo Y (2005) Characterization of malodorous sulfur compounds in landfill gas. Atmos Environ 39:1103–1112

    Article  CAS  Google Scholar 

  • Kim KH, Baek SO, Choi YJ, Sunwoo Y, Jeon EC, Hong JH (2006a) The emissions of major aromatic VOC as landfill gas from urban landfill sites in Korea. Environ Monit Assess 118:407–422

    Article  CAS  Google Scholar 

  • Kim KH, Choi YJ, Oh SI, Sa JH, Jeon EC, Koo YS (2006b) Short-term distributions of reduced sulfur compounds in the ambient air surrounding a large landfill facility. Environ Monit Assess 121:343–354

    Article  CAS  Google Scholar 

  • Kong JY, Bai Y, Su Y, Yao Y, He R (2014) Effects of trichloroethylene on community structure and activity of methanotrophs in landfill cover soils. Soil Biol Biochem 78:118–127

    Article  CAS  Google Scholar 

  • Kuenen JG, Robertson LA, Tuovinen OH (1992) The genera Thiobacillus, Thiomicrospira, and Thiosphaera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes, 2nd edn. Springer, New York, pp 2638–2657

    Google Scholar 

  • Luo JF, Tian GL, Lin WT (2013) Enrichment, isolation and identification of sulfur-oxidizing bacteria from sulfide removing bioreactor. J Environ Sci 25:1393–1399

    Article  CAS  Google Scholar 

  • Mahmood Q, Hu BL, Cai J, Zheng P, Azim MR, Jilani G, Islam E (2009) Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system. J Hazard Mater 165:558–565

    Article  CAS  Google Scholar 

  • McNevin D, Barford J, Hage J (1999) Adsorption and biological degradation of ammonium and sulfide on peat. Water Res 33:1449–1459

    Article  CAS  Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  CAS  Google Scholar 

  • Pandey SK, Narayan KD, Bandyopadhyay S, Nayak KC, Das SK (2009) Thiosulfate oxidation by Comamonas sp. S23 isolated from a sulfur spring. Curr Microbiol 58:516–521

    Article  CAS  Google Scholar 

  • Plaza C, Xu Q, Townsend T, Bitton G, Booth M (2007) Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills. J Environ Manag 84:314–322

    Article  CAS  Google Scholar 

  • Qiu CL, Liu JX, Peng ML (1992) Amendment method for sulfide content of soil. Chinese J Public Heath 8:549–550

    Google Scholar 

  • Sadowska-Rociek A, Kurdziel M, Szczepaniec-Cieciak E, Riesenmey C, Vaillant H, Batton-Hubert M, Piejko K (2009) Analysis of odorous compounds at municipal landfill sites. Waste Manag Res 27:966–975

    Article  CAS  Google Scholar 

  • Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res 27:409–455

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Seitz AP, Leadbetter ER, Godchaux W (1993) Utilization of sulfonates as sole sulfur source by soil bacteria including Comamonas acidovorans. Arch Microbiol 159:440–444

    Article  CAS  Google Scholar 

  • Sironi S, Capelli L, Céntola P, Del Rosso R, Grande MI (2005) Odour emission factors for the assessment and prediction of Italian MSW landfills odour impact. Atmos Environ 39:5387–5394

    Article  CAS  Google Scholar 

  • Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123

    Article  CAS  Google Scholar 

  • Stepniewski W, Horn R, Martyniuk S (2002) Managing soil biophysical properties for environmental protection. Agric Ecosyst Environ 88:175–181

    Article  Google Scholar 

  • Su Y, Zhang X, Wei XM, Kong JY, Xia FF, Li W, He R (2014) Evaluation of simultaneous biodegradation of methane and toluene in landfill covers. J Hazard Mater 274:367–375

    Article  CAS  Google Scholar 

  • Sungthong D (2010) Control of hydrogen sulfide emission. University of Central Florida, Florida

    Google Scholar 

  • Syed M, Soreanu G, Falletta P, Beland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng J 48:2.1–2.14

    Google Scholar 

  • Wang J, Xia FF, Bai Y, Fang CR, Shen DS, He R (2011) Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manag 31:864–870

    Article  CAS  Google Scholar 

  • Xia FF, Su Y, Wei XM, He YH, Wu ZC, Ghulam A, He R (2014) Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils. Lett Appl Microbiol 59:26–34

    Article  CAS  Google Scholar 

  • Xu Q, Townsend T, Reinhart D (2010) Attenuation of hydrogen sulfide at construction and demolition debris landfills using alternative cover materials. Waste Manag 30:660–666

    Article  CAS  Google Scholar 

  • Xu XJ, Chen C, Lee DJ, Wang AJ, Guo WQ, Zhou X, Guo HL, Yuan Y, Ren NQ, Chang JS (2013) Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: modeling and experimental validation. Bioresour Technol 147:202–211

    Article  CAS  Google Scholar 

  • Yan R, Chin T, Ng YL, Duan H, Liang DT, Tay JH (2004) Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons. Environ Sci Technol 38:316–323

    Article  CAS  Google Scholar 

  • Zhang JB, Zhang T, Ma K, Chen GH, Zhang DY, Wei XH (2008) Isolation and identification of the thermophilic alkaline desulphuricant strain. Sci China Ser B 51:158–165

    Article  CAS  Google Scholar 

  • Zhang X, Kong JY, Xia FF, Su Y, He R (2014) Effects of ammonium on the activity and community of methanotrophs in landfill biocover soils. Syst Appl Microbiol 37:296–304

    Article  CAS  Google Scholar 

  • Zheng LJ, Song JC, Li CY, Gao YG, Geng PL, Qu BN, Lin LY (2014) Preferential policies promote municipal solid waste (MSW) to energy in China: Current status and prospects. Renew Sustain Energy Rev 36:135–148

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China with Grant No. 41001148, No. 51178411, and No.41371012 and Zhejiang Province Natural Science Foundation for Distinguished Young Scholars (LR13E080002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo He.

Additional information

Responsible editor: Zhihong Xu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 124 kb)

ESM 2

(DOCX 76 kb)

ESM 3

(DOCX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, FF., Zhang, HT., Wei, XM. et al. Characterization of H2S removal and microbial community in landfill cover soils. Environ Sci Pollut Res 22, 18906–18917 (2015). https://doi.org/10.1007/s11356-015-5070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5070-x

Keywords

Navigation