Skip to main content

Advertisement

Log in

Short-term arsenic exposure reduces diatom cell size in biofilm communities

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic (As) pollution in water has important impacts for human and ecosystem health. In freshwaters, arsenate (AsV) can be taken up by microalgae due to its similarity with phosphate molecules, its toxicity being aggravated under phosphate depletion. An experiment combining ecological and ecotoxicological descriptors was conducted to investigate the effects of AsV (130 μg L−1 over 13 days) on the structure and function of fluvial biofilm under phosphate-limiting conditions. We further incorporated fish (Gambusia holbrooki) into our experimental system, expecting fish to provide more available phosphate for algae and, consequently, protecting algae against As toxicity. However, this protection role was not fully achieved. Arsenic inhibited algal growth and productivity but not bacteria. The diatom community was clearly affected showing a strong reduction in cell biovolume; selection for tolerant species, in particular Achnanthidium minutissimum; and a reduction in species richness. Our results have important implications for risk assessment, as the experimental As concentration used was lower than acute toxicity criteria established by the USEPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhattacharya S, Bhattacharya A, Roy S (2007) Arsenic-induced responses in fresh-water teleosts. Fish Physiol Biochem 33:463–473

    Article  CAS  Google Scholar 

  • Blanck H et al (2003) Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Arch Environ Contam Toxicol 44:17–29

    Article  CAS  Google Scholar 

  • Bonet B (2013) Antioxidant enzyme activities in fluvial biofilms as biomarkers of metal pollution. Dissertation, Universitat de Girona

  • Borchardt MA (1996) Nutrients. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 183–227

    Chapter  Google Scholar 

  • Carvalho LHM, De Koe T, Tavares PB (1998) An improved molybdenum blue method for simultaneous determination of inorganic phosphate and arsenate. Ecotoxicol Environ Res 1:13–19

    Google Scholar 

  • Cattaneo A, Asioli A, Comoli P, Manca M (1998) Organisms’ response in a chronically polluted lake supports hypothesized link between stress and size. Limnol Oceanogr 43:1938–1943

    Google Scholar 

  • Cattaneo A, Couillard Y, Wunsam S, Courcelles M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J Paleolimnol 32:163–175. doi:10.1023/B:JOPL.0000029430.78278.a5

    Article  Google Scholar 

  • Chepurnov VA et al (2008) In search of new tractable diatoms for experimental biology. BioEssays 30:692–702

    Article  Google Scholar 

  • Corcoll N, Ricart M, Franz S, Sans-Piché F, Schmitt-Jansen M, Guasch H (2012) The use of photosynthetic fluorescence parameters from autotrophic biofilms for monitoring the effect of chemicals in river ecosystems. In: Guasch H, Ginebreda A, Geiszinger A (eds) Handbook of environmental chemistry, vol 19. vol Emerging and priority pollutants in rivers. Springer, Heidelberg, pp 86–114

  • Coste M, Boutry S, Tison-Rosebery J, Delmas F (2009) Improvements of the Biological Diatom Index (BDI): description and efficiency of the new version (BDI-2006). Ecol Indic 9:621–650. doi:10.1016/j.ecolind.2008.06.003

    Article  CAS  Google Scholar 

  • Davis A, Sherwin D, Ditmars R, Hoenke KA (2001) An analysis of soil arsenic records of decision. Environ Sci Technol 35:2401

    Article  CAS  Google Scholar 

  • Davolos D, Pietrangeli B (2013) A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy). Ecotoxicol Environ Saf 96:1–9

    Article  CAS  Google Scholar 

  • Dodds WK, Jones JR, Welch EB (1998) Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res 32:1455–1462

    Article  CAS  Google Scholar 

  • Drebes G (1977) Sexuality. In: Werner D (ed) The biology of diatoms. Bot. Monogr. 13. Blackwell Sci. Publ., Oxford., pp 250–283

  • Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90:19–28. doi:10.1016/j.aquatox.2008.07.012

    Article  CAS  Google Scholar 

  • Ferreira da Silva E et al (2009) Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Sci Total Environ 407:5620–5636. doi:10.1016/j.scitotenv.2009.06.047

    Article  CAS  Google Scholar 

  • Freese HM, Karsten U, Schumann R (2006) Bacterial abundance, activity, and viability in the eutrophic River Warnow, Northeast Germany. Microb Ecol 51:117–127

    Article  CAS  Google Scholar 

  • Gensemer RW, Smith REH, Duthie HC (1995) Interactions of pH and aluminium on cell length reduction in Asterionella ralfsii var. americana Körner. In: Marino D, Montresor M (eds) Proceedings of the 13th International Diatom Symposium, 1–7 Sep 1994, Koeltz Scientific Books Königstein, Acquafredda di Maratea, Italy, pp 39–46

  • Griffith MB, Hill BH, McCormick FH, Kaufmann PR, Herlihy AT, Selle AR (2005) Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to southern Rocky Mountain streams. Ecol Indic 5:117–136

    Article  Google Scholar 

  • Guasch H et al (2012) How to link field observations with causality? Field and experimental approaches linking chemical pollution with ecological alterations. In: Guasch H, Ginebreda A, Geiszinger A (eds) Emerging and priority pollutants in rivers, vol 19. The Handbook of environmental chemistry. Springer Berlin Heidelberg, pp 181–218. doi:10.1007/978-3-642-25722-3_7

  • Guo P, Gong Y, Wang C, Liu X, Liu J (2011) Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes. Environ Toxicol Chem 30:1754–1759

    Article  CAS  Google Scholar 

  • Helsel DR (1990) Less than obvious—statistical treatment of data below the detection limit. Environ Sci Technol 24:1766–1774. doi:10.1021/es00082a001

    Article  CAS  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424. doi:10.1046/j.1529-8817.1999.3520403.x

    Article  Google Scholar 

  • Jeffrey ST, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    CAS  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae 1. Teil: Naviculaceae. 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. 437 p. vol Band 2/1-4. Süßwasserflora von Mitteleuropa. G. Fischer Verlag., Stuttgart

  • Leira M, Sabater S (2005) Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Res 39:73–82

    Article  CAS  Google Scholar 

  • Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Technol Chem 24:2630–2639

  • Luís AT, Teixeira P, Almeida SFP, Matos JX, da Silva EF (2011) Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci Total Environ 409:4312–4325. doi:10.1016/j.scitotenv.2011.06.052

    Article  CAS  Google Scholar 

  • Magellan K, Barral-Fraga L, Rovira M, Srean P, Urrea G, García-Berthou E, Guasch H (2014) Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae. Aquat Toxicol 156:116–124. doi:10.1016/j.aquatox.2014.08.006

    Article  CAS  Google Scholar 

  • McFarland BH, Hill BH, Willingham WT (1997) Abnormal Fragilaria spp. (Bacillariophyceae) in streams impacted by mine drainage. J Freshwat Ecol 12:141–149

  • Miot J, Morin G, Skouri-Panet F, Ferard C, Poitevin A, Aubry E, Ona-Nguema G, Juillot F, Guyot F, Brown GE Jr (2009) Speciation of arsenic in Euglena gracilis cells exposed to As (V). Environ Sci Technol 43:3315e3321

  • Moeller A, MacNeil SD, Ambrose RF, Que Hee SS (2003) Elements in fish of Malibu Creek and Malibu Lagoon near Los Angeles, California. Mar Pollut Bull 46:424–429

    Article  CAS  Google Scholar 

  • Mora-Gómez J, Freixa A, Perujo N, Barral-Fraga L (2015) Limits of the biofilm concept and types of aquatic biofilms. In: Romaní AM, Guasch H, Balaguer MD (eds) Aquatic biofilms: ecology, water quality and wastewater treatment. In Press. ISBN: 978-1-910190-17-3

  • Morin S, Coste M (2006) Metal-induced shifts in the morphology of diatoms from the Riou Mort and Riou Viou streams (South West France). In: Ács É, Kiss KT, Padisák J, Szabó K (eds) Use of algae for monitoring rivers VI. Hungarian Algological Society, Göd, Hungary, Balatonfüred, pp 91–106

  • Morin S et al. (2012) Consistency in diatom response to metal-contaminated environments. In: Guasch H, Ginebreda A, Geiszinger A (eds) Handbook of environmental chemistry, vol 19. vol Emerging and Priority Pollutants in Rivers. Springer, Heidelberg, pp 117–146. doi:10.1007/978-3-642-25722-3_5

  • Newman MC, Diamond SA, Mulvey M, Dixon P (1989) Allozyme genotype and time to death of mosquitofish Gambusia affinis (Baird and Girard) during acute toxicant exposure: a comparison of arsenate and inorganic mercury. Aquat Toxicol 15:141–156

    Article  CAS  Google Scholar 

  • Passy SI (2008) Continental diatom biodiversity in stream benthos declines as more nutrients become limiting. Proc Natl Acad Sci U S A 105:9663–9667

    Article  Google Scholar 

  • Passy SI (2012) A hierarchical theory of macroecology. Ecol Lett 15:923–934. doi:10.1111/j.1461-0248.2012.01809.x

    Article  Google Scholar 

  • Pistocchi R, Guerrini F, Balboni V, Boni L (1997) Copper toxicity and carbohydrate production in the microalgae Cylindrotheca fusiformis and Gymnodinium sp. Eur J Phycol 32:125–132

  • Potapova M, Snoeijs P (1997) The natural life cycle in wild populations of Diatoma moniliformis (Bacillariophyceae) and its disruption in an aberrant environment. J Phycol 33:924–937

    Article  Google Scholar 

  • Rahman MA, Hasegawa H, Lim RP (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116:118–135

    Article  CAS  Google Scholar 

  • Rodriguez Castro MC, Urrea G, Guasch H (2015) Influence of the interaction between phosphate and arsenate on periphyton’s growth and its nutrient uptake capacity. Sci Total Environ. doi:10.1016/j.scitotenv.2014.06.094

    Google Scholar 

  • Romaní AM (2010) Freshwater biofilms. In: Dürr S, Thomason JC (eds) Biofouling. Blackwell Publishing Ltd Oxford, pp 137–153

  • Rosso JJ, Troncoso JJ, Fernandez Cirelli A (2011) Geographic distribution of arsenic and trace metals in lotic ecosystems of the Pampa Plain, Argentina. Bull Environ Contam Toxicol 86:129–132

    Article  CAS  Google Scholar 

  • Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425–1434

    Article  CAS  Google Scholar 

  • Serra A (2009) Fate and effects of copper in fluvial ecosystems: the role of periphyton. Dissertation, Universitat de Girona

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2005) Sources and behavior of arsenic in natural waters. http://www.who.int/water_sanitation_health/dwq/arsenicun1.pdf. Accessed 15 Jan 2015

  • Tien CJ (2004) Some aspects of water quality in a polluted lowland river in relation to the intracellular chemical levels in planktonic and epilithic diatoms. Water Res 38:1779–1790

    Article  CAS  Google Scholar 

  • USEPA (2014) National recommended water quality criteria: aquatic life criteria. Environmental Protection Agency Web. http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/index.cfm. Accessed 23 Feb 2015

  • Wang NX, Li Y, Deng XH, Miao AJ, Ji R, Yang LY (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47:2497–2506

    Article  CAS  Google Scholar 

  • Wang NX, Huang B, Xu S, Wei ZB, Miao AJ, Ji R, Yang LY (2014) Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. Aquat Toxicol 157:167–174

Download references

Acknowledgments

Financial support was provided by Spanish Science and Education Ministry (project CTM2009-14111-CO2-01), Spanish Economy and Competitiveness Ministry (project CGL2013-43822-R), and the University of Girona project SING12/09. Laura Barral Fraga benefited from a doctoral fellowship from the Univeristy of Girona (BR 2013/06) and a mobility grant from the Institut National de Recherche en Sciences et Technologies pour l’Environnement et l’Agriculture (IRSTEA, Bordeaux, France). Kit Magellan benefited from a Marie Curie International Reintegration Grant within the 7th European Community Framework Programme.

Special thanks to Anna Freixa, Roberto Merciai, Pao Srean, Irene Tornero, Dr. Juanita Mora-Gómez, Dr. Elisabet Tornés, Dr. Stéphanie Gascón, and Dr. Emili García-Berthou for their advice and help. Also thanks to Esther Pérez for assistance with lab set-up, and the Unit of Structural and Chemical Analyses of the Technical Research Services of the University of Girona for the arsenic analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethics statement

This study does not include endangered or otherwise protected species. All fish were properly collected and handled in an ethical manner, following all national and institutional guidelines for animal experiments. Every effort was made to ensure that suffering to the fish was minimized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Barral-Fraga.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barral-Fraga, L., Morin, S., Rovira, M.D.M. et al. Short-term arsenic exposure reduces diatom cell size in biofilm communities. Environ Sci Pollut Res 23, 4257–4270 (2016). https://doi.org/10.1007/s11356-015-4894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4894-8

Keywords

Navigation