Skip to main content
Log in

Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Adsorption of tetracycline (TC) on kaolinite and montmorillonite was investigated using batch adsorption experiments with different pH, ionic strength, and surface coverage. As a result, pH and ionic strength-dependent adsorption of TC was observed for the two clay minerals. The adsorption of TC decreased with the increase of pH and ionic strength, and high initial TC concentration had high adsorption. In addition, a triple-layer model was used to predict the adsorption and surface speciation of TC on the two minerals. As a result, four complex species on kaolinite (≡X∙H3TC+, ≡X∙H2TC±, ≡SOH0∙H2TC±, and ≡SOH0∙HTC) and three species on montmorillonite (≡X∙H3TC+, ≡X∙H2TC±, and ≡SOH0∙HTC) were structurally constrained by spectroscopy, and these species were also successfully fitted to the adsorption edges of TC. Three functional groups of TC were involved in these adsorption reactions, including the positively charged dimethylamino group, the C=O amide I group, and the C=O group at the C ring. Combining adsorption experiments and model in this study, the adsorption of TC on kaolinite and montmorillonite was mainly attributed to cation exchange on the surface sites (≡X) compared to surface complexation on the edge sites (≡SOH) at natural soil pH condition. Moreover, the surface adsorption species, the corresponding adsorption modes, and the binding constants for the surface reactions were also estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aristilde L, Marichal C, Miehe-Brendle J, Lanson B, Charlet L (2010) Interactions of oxytetracycline with a smectite clay: a spectroscopic study with molecular simulations. Environ Sci Technol 44:7839–7845

    Article  CAS  Google Scholar 

  • Baeyens B, Bradbury MH (1997) A mechanistic description of Ni and Zn sorption on Na-montmorillonite.1. Titration and sorption measurements. J Contam Hydrol 27:199–222

    Article  CAS  Google Scholar 

  • Bound JP, Voulvoulis N (2004) Pharmaceuticals in the aquatic environment-a comparison of risk assessment strategies. Chemosphere 56:1143–1155

    Article  CAS  Google Scholar 

  • Bourg IC, Sposito G, Bourg ACM (2007) Modeling the acid–base surface chemistry of montmorillonite. J Colloid Interface Sci 312:297–310

    Article  CAS  Google Scholar 

  • Carrasquillo AJ, Bruland GL, Mackay AA, Vasudevan D (2008) Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: influence of compound structure. Environ Sci Technol 42:7634–7642

    Article  CAS  Google Scholar 

  • Chang PH, Li ZH, Jiang WT, Jean JS (2009) Adsorption and intercalation of tetracycline by swelling clay minerals. Appl Clay Sci 46:27–36

    Article  CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modelling: hydrous ferric oxide. Wiley, New York

    Google Scholar 

  • Essington ME, Lee J, Seo Y (2010) Adsorption of antibiotics by montmorillonite and kaolinite. Soil Sci Soc Am J 74:1577–1588

    Article  CAS  Google Scholar 

  • Evanko CR, Dzombak DA (1999) Surface complexation modeling of organic acid sorption to goethite. J Colloid Interface Sci 214:189–206

    Article  CAS  Google Scholar 

  • Figueroa RA, Mackay AA (2005) Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ Sci Technol 39:6664–6671

    Article  CAS  Google Scholar 

  • Figueroa RA, Leonard A, Mackay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483

    Article  CAS  Google Scholar 

  • Goldberg S (2005) Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. J Colloid Interface Sci 285:509–517

    Article  CAS  Google Scholar 

  • Gu XY, Evans LJ (2008) Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochim Cosmochim Acta 72:267–276

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan KG (2008) Sorption of the antibiotic tetracycline to humic-mineral complexes. J Environ Qual 37:704–711

    Article  CAS  Google Scholar 

  • Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66:1494–1501

    Article  CAS  Google Scholar 

  • Gu XY, Evans LJ, Barabash SJ (2010) Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochim Cosmochim Acta 74:5718–5728

    Article  CAS  Google Scholar 

  • Herbelin AL, Westall JC (1999) FITEQL 4.0: a computer program for determination of chemical equilibrium constants from experimental data. Department of Chemistry, Oregon State University, Corvallis, Oregon

    Google Scholar 

  • Hu XG, Luo Y, Zhou QX, Xu L (2008) Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chin J Anal Chem 36:1162–1166

    Article  CAS  Google Scholar 

  • Ikhsan J, Johnson BB, Wells JD, Angove MJ (2004) Adsorption of aspartic acid on kaolinite. J Colloid Interface Sci 273:1–5

    Article  CAS  Google Scholar 

  • Ikhsan J, Angove MJ, Johnson BB, Wells JD (2005) Cosorption of Zn(II) and 2-, 3-, or 4-aminopyridine by montmorillonite. J Colloid Interface Sci 284:400–407

    Article  CAS  Google Scholar 

  • Ji LL, Chen W, Duan L, Zhu DQ (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43:2322–2327

    Article  CAS  Google Scholar 

  • Jonsson CM, Persson P, Sjoberg S, Loring JS (2008) Adsorption of glyphosate on goethite (alpha-FeOOH): surface complexation modeling combining spectroscopic and adsorption data. Environ Sci Technol 42:2464–2469

    Article  CAS  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Article  CAS  Google Scholar 

  • Kulshrestha P, Giese RF, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105

    Article  CAS  Google Scholar 

  • Landry CJ, Koretsky CM, Lund TJ, Schaller M, Das S (2009) Surface complexation modeling of Co(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. Geochim Cosmochim Acta 73:3723–3737

    Article  CAS  Google Scholar 

  • Li ZH, Chang PH, Jean JS, Jiang WT, Wang CJ (2010a) Interaction between tetracycline and smectite in aqueous solution. J Colloid Interface Sci 341:311–319

    Article  CAS  Google Scholar 

  • Li ZH, Kolb VM, Jiang WT, Hong HL (2010b) FTIR and XRD investigations of tetracycline intercalation in smectites. Clay Clay Miner 58:462–474

    Article  CAS  Google Scholar 

  • Liu ZZ, He Y, Xu JM, Huang PM, Jilani G (2008) The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils. Environ Pollut 152:163–171

    Article  CAS  Google Scholar 

  • Lund TJ, Koretsky CM, Landry CJ, Schaller MS, Das S (2008) Surface complexation modeling of Cu(II) adsorption on mixtures of hydrous ferric oxide and kaolinite. Geochem Trans 9:9

    Article  Google Scholar 

  • Morton JD, Semrau JD, Hayes KF (2001) An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochim Cosmochim Acta 65:2709–2722

    Article  CAS  Google Scholar 

  • Parolo ME, Savini MC, Valles JM, Baschini MT, Avena MJ (2008) Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci 40:179–186

    Article  CAS  Google Scholar 

  • Parolo ME, Avena MJ, Pettinari G, Zajonkovsky I, Valles JM, Baschini MT (2010) Antimicrobial properties of tetracycline and minocycline-montmorillonites. Appl Clay Sci 49:194–199

    Article  CAS  Google Scholar 

  • Pei ZG, Shan XQ, Kong JJ, Wen B, Owens G (2010) Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH. Environ Sci Technol 44:915–920

    Article  CAS  Google Scholar 

  • Pils JRV, Laird DA (2007) Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ Sci Technol 41:1928–1933

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Swedlund PJ, Webster JG, Miskelly GM (2009) Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: properties of the ternary complex. Geochim Cosmochim Acta 73:1548–1562

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  CAS  Google Scholar 

  • Wang YJ, Jia DA, Sun RJ, Zhu HW, Zhou DM (2008) Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ Sci Technol 42:3254–3259

    Article  CAS  Google Scholar 

  • Wang JT, Hu J, Zhang SW (2010) Studies on the sorption of tetracycline onto clays and marine sediment from seawater. J Colloid Interface Sci 349:578–582

    Article  CAS  Google Scholar 

  • Wilson CJ, Brain RA, Sanderson H, Johnson DJ, Bestari KT, Sibley PK, Solomon KR (2004) Structural and functional responses of plankton to a mixture of four tetracyclines in aquatic microcosms. Environ Sci Technol 38:6430–6439

    Article  CAS  Google Scholar 

  • Zhao Y, Geng J, Wang X, Gu X, Gao S (2011) Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects. Ecotoxicology 20:1141–1147

    Article  CAS  Google Scholar 

  • Zhao Y, Gu X, Gao S, Geng J, Wang X (2012) Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects. Geoderma 183:12–18

    Article  Google Scholar 

  • Zhao Y, Tong F, Gu X, Gu C, Wang X, Zhang Y (2014) Insights into tetracycline adsorption onto goethite: experiments and modeling. Sci Total Environ 470–471:19–25

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 21407076), the Jiangsu Taihu Lake Water Environment Management Research (No. TH2014402), and the Jiangsu Natural Science Foundation (BK2011016)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiang Wang.

Additional information

Responsible editor: Marcus Schulz

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Gu, X., Li, S. et al. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling. Environ Sci Pollut Res 22, 17031–17040 (2015). https://doi.org/10.1007/s11356-015-4839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4839-2

Keywords

Navigation