Skip to main content
Log in

The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nano-TiO2 is a widely applied nanoparticle (NPs) and co-exists with other pollutants such as heavy metals in aquatic environments. However, minimal knowledge is available concerning the ecological risk of these mixtures. Our study reported that at no toxic effect concentrations of TiO2 nanoparticles (5 mg/L), the toxicity of Cu ions to the algae Microcystis aeruginosa was significantly attenuated by TiO2 nanoparticles. Specifically, the concentration of photosynthetic pigments (i.e., concentration of Chla) increased 37 % when comparing only Cu ions treated and the nano-TiO2-Cu co-incubation. The levels of phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and phycobiliprotein (PBPs) were also recovered at levels ranging from 23 to 35 % after 72 h. For oxidative indexes, the decreased activities of the superoxide dismutase (SOD), peroxidase (POD) content, and malondialdehyde (MDA) with the existence of nano-TiO2 displayed a lower level compared to Cu ions treatment only at 24 and 48 h. This toxicity attenuation can be confirmed by subcellular structures because the impairment to cellular membranes and organelles reduced with the presence of nano-TiO2. The potential mechanisms of the antagonism between the nano-TiO2 and Cu ions can be partially attributed to the sorption of copper onto TiO2 nanoparticles, which fitted the Freundlich isotherm (coefficient = 0.967). The decreased bioavailability of Cu ions protected algae cells from being attacked by free Cu ions. Given the abundance of released nanoparticles and unique physicochemical property of nanoparticles, our results elucidated the ecosafety of nanoparticles and co-substrates in aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ballan-Dufranc-ais C, Marcaillou C, Amiard-Triquet C (1991) Response of the phytoplanktonic alga tetraselmis suecica to copper and silver exposure: vesicular metal bioaccumulation and lack of starch bodies. Biol Cell 72:103–112

    Article  CAS  Google Scholar 

  • Chen JY, Zhu DQ, Sun C (2007) Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ Sci Technol 41:2536–2541

    Article  CAS  Google Scholar 

  • Chen JY, Dong X, Xin YY, Zhao MR (2011) Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat Toxicol 101:493–499

    Article  CAS  Google Scholar 

  • EPA (The United States Environmental Protection Agency) (2007) Aquatic life ambient freshwater quality criteria-copper 2007 revision.EPA-822-R-07-001. <http://www.epa.gov/waterscience/criteria/copper/index.htm>

  • EPA (The United States Environmental Protection Agency) (2009) External review draft, nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. United States Environmental Protection Agency. <http://www.safenano.org/SingleNews.aspx? NewsId = 788 (accessed 09.10.10)>

  • Fan WH, Cui MM, Liu H, Wang C, Shi ZW, Tan C, Yang XP (2011) Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ Pollut 159:729–734

    Article  CAS  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  Google Scholar 

  • Hall S, Bradley T, Moore JT, Kuykindall T, Minella L (2009) Acute and chronic toxicity ofnano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3:91–97

    Article  CAS  Google Scholar 

  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles-testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197

    Article  CAS  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80 % acetone. Plant Physiol 77:483–485

    Article  CAS  Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239

    Article  CAS  Google Scholar 

  • Karen EE, Heather JS (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395

    Article  Google Scholar 

  • Knauert S, Knauer K (2008) The role of reactive oxygen species in copper (Cu) toxicity to two freshwater green algal. J Phycol 44:311–319

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. Microb Ecol 44:253–259

    Article  CAS  Google Scholar 

  • Padgett MP, Krogmann DW (1987) Large scale preparation of pure hycobiliproteins. Photosynth Res 11:225–235

    Article  CAS  Google Scholar 

  • Qian HF, Chen W, Sheng GD, Xu XY, Liu WP, Fu ZW (2008) Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat Toxicol 88:301–307

    Article  CAS  Google Scholar 

  • Qian HF, Li JJ, Sun LW, Chen W, Sheng GD, Liu WP, Fu ZW (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth andphotosynthesis-related gene transcription. Aquat Toxicol 94:56–61

    Article  CAS  Google Scholar 

  • Qian HF, Yu SQ, Sun ZQ, Xie XC, Liu WP, Fu ZW (2010) Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquat Toxicol 99:405–412

    Article  CAS  Google Scholar 

  • Wen YZ, Chen H, Shen CS, Zhao MR, Liu WP (2011) Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species. Environ Sci Technol 45:4778–4784

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (No.21177114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meirong Zhao.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Qian, Y., Li, H. et al. The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa . Environ Sci Pollut Res 22, 12407–12414 (2015). https://doi.org/10.1007/s11356-015-4492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4492-9

Keywords

Navigation