Skip to main content
Log in

Hartig’ net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures

  • Alteration and element mobility at the microbe-mineral interface
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

For re-forestation of metal-contaminated land, ectomycorrhizal trees may provide a solution. Hence, the study of the interaction is necessary to allow for comprehensive understanding of the mutually symbiotic features. On a structural level, hyphal mantle and the Hartig’ net formed in the root apoplast are essential for plant protection and mycorrhizal functioning. As a model, we used the basidiomycete Tricholoma vaccinum and its host spruce (Picea abies). Using an optimized hydroponic cultivation system, both features could be visualized and lower stress response of the tree was obtained in non-challenged cultivation. Larger spaces in the apoplasts could be shown with high statistical significance. The easy accessibility will allow to address metal stress or molecular responses in both partners. Additionally, the proposed cultivation system will enable for other experimental applications like addressing flooding, biological interactions with helper bacteria, chemical signaling, or other biotic or abiotic challenges relevant in the natural habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerer R (1995) Anatomical characteristics of identified eczomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Berlin, pp 685–734

    Google Scholar 

  • Arduini D, Godbold L, Onnis A (1994) Heavy metal uptake and distribution in tree seedlings. G Bot Ital 128(1):219

    Article  Google Scholar 

  • Asiimwe T, Krause K, Schlunk I, Kothe E (2010) Ectomycorrhiza in sustainable ecosystem functioning: A closer look at the symbiotic association. In: Behl RK (ed) Resource management towards sustainable agriculture and development. Agrobios Publishers, Jodhpur, pp 113–120

    Google Scholar 

  • Asiimwe T, Krause K, Schlunk I, Kothe E (2012) Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. Mycorrhiza 22:471–484

    Article  CAS  Google Scholar 

  • Brunner I (1993) Production of ectomycorrhizal Picea abiesHebeloma crustuliniforme seedlings for ecological studies: effects of synthesis techniques on the morphology of the symbiosis. Water Air Soil Pollut 68:231–240

    Article  Google Scholar 

  • Büntgen U, Egli S (2014) Breaking new ground at the interface of dendroecology and mycology. Trends Plant Sci 19:613–614

    Article  Google Scholar 

  • Chilvers GA, Douglass PA, Lapeyrie FF (1986) A paper-sandwich technique for rapid synthesis of ectomycorrhizas. New Phytol 103:397–402

    Article  Google Scholar 

  • Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536

    Article  CAS  Google Scholar 

  • de Freitas Pereira M, Betancourth BM, Teixeira JA, Zubieta MP, de Queiroz MV, Kasuya MC, Costa MD, de Araújo EF (2014) In vitro Scleroderma laeve and Eucalyptus grandis mycorrhization and analysis of atp6, 17S rDNA, and ras gene expression during ectomycorrhizal formation. J Basic Microbiol 54:1358–1366

    Article  Google Scholar 

  • Dore J, Marmeisse R, Combier JP, Gay G (2014) A fungal conserved gene from the basidiomycete Hebeloma cylindrosporum is essential for efficient ectomycorrhiza formation. Mol Plant Microbe Interact 27:1059–1069

    Article  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  CAS  Google Scholar 

  • Furrer G, Phillips BL, Ulrich KU, Pöthig R, Casey WH (2002) The origin of aluminum flocs in polluted streams. Science 297:2245–2247

    Article  CAS  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337

    Article  Google Scholar 

  • Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann SD (2014) Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol 201:951–960

    Article  CAS  Google Scholar 

  • Gehring CA, Müller RC, Haskins KE, Rubow TK, Whitham TG (2014) Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants. Front Microbiol 5:306

    Article  Google Scholar 

  • Hacskaylo E (1953) Pure culture syntheses of pine mycorrhizae in Terra-Lite. Mycologia 45(6):971–975

    Google Scholar 

  • Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280

    Article  CAS  Google Scholar 

  • Hayward J, Horton TR (2014) Phylogenetic trait conservation in the partner choice of a group of ectomycorrhizal trees. Mol Ecol 23:4886–4898

    Article  Google Scholar 

  • Heim A, Brunner I, Frey B, Frossard E, Luster J (2001) Root exudation, organic acids, and element distribution in roots of Norway spruce treated with aluminium in hydroponics. J Plant Nutr Soil Sci 164:519–526

    Article  CAS  Google Scholar 

  • Iordache V, Gherghel F, Kothe E (2009) Assessing the effect of disturbances on ectomycorrhiza diversity. Int J Environ Res Publ Health 6:414–432

    Article  Google Scholar 

  • Knabe N, Jung E-M, Freihorst D, Hennicke F, Horton JS, Kothe E (2013) A central role for Ras1 in morphogenesis of the basidiomycete Schizophyllum commune. Eukaryot Cell 12:941–952

    Article  CAS  Google Scholar 

  • Kottke I, Guttenberger M, Hampp R, Oberwinkler F (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees 1:191–194

    Article  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–29

    Google Scholar 

  • Krause K, Kothe E (2006) Use of RNA fingerprinting to identify fungal genes specifically expressed during ectomycorrhizal interaction. J Basic Microbiol 46:387–399

    Article  CAS  Google Scholar 

  • Kuo A, Kohler A, Martin FM, Grigoriev IV (2014) Expanding genomics of mycorrhizal symbiosis. Front Microbiol 5:582

    Article  Google Scholar 

  • Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Büchel G, Kothe E (2014) Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut Res 21:6845–6858

    Article  CAS  Google Scholar 

  • Lepp NW (1970) The potential of tree-ring analysis for monitoring heavy metal pollution patterns. Environ Pollut 9:49–61

    Article  Google Scholar 

  • Liao HL, Chen Y, Bruns TD, Peay KG, Taylor JW, Branco S, Talbot JM, Vilgalys R (2014) Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: improved methodologies for assessing gene expression in situ. Environ Microbiol 16(12):3730–3742

    Article  CAS  Google Scholar 

  • Nicoară A, Neagoe A, Stancu P, de Giudici G, Langella F, Sprocati AR, Iordache V, Kothe E (2014) Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. Environ Sci Pollut Res 21:6905–6920

    Article  Google Scholar 

  • Nylund J-E, Wallander H, Sundberg B, Gay G (1994) IAA-overproducer mutants of Hebeloma cylindrosporum Romagnesi mycorrhizal with Pinus pinaster (Ait.) Sol. and P. sylvestris L. in hydroponic culture. Mycorrhiza 4:247–250

    Article  CAS  Google Scholar 

  • Osundina MA (1998) Nodulation and growth of mycorrhizal Casuarina equisetifolia J.R. and G. First in response to flooding. Biol Fertil Soils 26:95–99

    Article  Google Scholar 

  • Pérez Rodríguez N, Langella F, Rodushkin I, Engström E, Kothe E, Alakangas L, Öhlander B (2014) The role of bacterial consortium and organic amendment in Cu and Fe isotope fractionation in plants on a polluted mine site. Environ Sci Pollut Res 21:6836–6844

    Article  Google Scholar 

  • Pfeiffer F (1898) Beiträge zur Fixierung und Präparation der Süßwasseralgen. Österr Bot Z 48:53–59

    Article  Google Scholar 

  • Phieler R, Voit A, Kothe E (2014) Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. Adv Biochem Eng Biotechnol 141:211–235

    Google Scholar 

  • Plett JM, Tisserant E, Brun A, Morin E, Grigoriev IV, Kuo A, Martin FM, Kohler A (2015) The mutualist Laccaria bicolor expresses a core gene regulon during the colonization of diverse host plants and a variable regulon to counteract host-specific defenses. Mol Plant Microbe Interact 28(3):261–273

    Article  CAS  Google Scholar 

  • Pohjanen J, Koskimäki JJ, Sutela S, Ardanov P, Suorsa M, Niemi K, Sarjala T, Häggman H, Pirttilä AM (2014) Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro. Tree Physiol 34:993–1005

    Article  Google Scholar 

  • Raudaskoski M, Kothe E (2014) Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses. Mycorrhiza. doi:10.1007/s00572-014-0607-2

    Google Scholar 

  • Rovira AD (1959) Root excretions in relation to the rhizosphere effect. Plant Soil 11:53–64

    Article  CAS  Google Scholar 

  • Rutto KL, Mizutani F, Kadoya K (2002) Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Sci Hortic 94:285–295

    Article  Google Scholar 

  • Scheidegger C, Brunner I (1993) Freeze-fracturing for low-temperature scanning electron microscopy of Hartig net in synthesized Picea abies - Hebeloma crustuliniforme and -Tricholoma vaccinum ectomycorrhizas. New Phytol 123:123–132

    Article  Google Scholar 

  • Schütze E, Klose M, Merten D, Nietzsche S, Senftleben D, Roth M, Kothe E (2014) Growth of streptomycetes in soil and their impact on bioremediation. J Hazard Mater 267:128–135

    Article  Google Scholar 

  • Sebastiana M, Vieira B, Lino-Neto T, Monteiro F, Figueiredo A, Sousa L, Pais MS, Tavares R, Paulo OS (2014) Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 9(5):e98376. doi:10.1371/journal.pone.0098376

    Article  Google Scholar 

  • Seven J, Polle A (2014) Subcellular nutrient element localization and enrichment in ecto- and arbuscular mycorrhizas of field-grown beech and ash trees indicate functional differences. PLoS One 9(12):e114672. doi:10.1371/journal.pone.0114672

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press Inc., San Diego

    Google Scholar 

  • Ugawa S, Fukuda K (2005) The response of ectomycorrhizal fungi on Pinus densiflora seedling roots to liquid culture. J For Res 10:233–237

    Article  Google Scholar 

  • Veneault-Fourrey C, Commun C, Kohler A, Morin E, Balestrini R, Plett J, Danchin E, Coutinho P, Wiebenga A, de Vries RP, Henrissat B, Martin F (2014) Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol 72:168–181

    Article  CAS  Google Scholar 

  • Wenkart S, Roth-Bejerano N, Mills D, Kagan-Zur V (2001) Mycorrhizal associations between Tuber melanosporum mycelia and transformed roots of Cistus incanus. Plant Cell Rep 20:369–373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the University of Jena and the Research Training Group “Alteration and element mobility at microbe-mineral interfaces". We would like to thank the Graduate School “Jena School for Microbial Communication” (JSMC) as part of the German Excellence Initiative and the German National Academic Foundation for support in this work. The authors especially thank Annekatrin Voigt for technical support.

Conflict of interest

The authors state that no potential conflicts of interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Henke.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henke, C., Jung, EM. & Kothe, E. Hartig’ net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures. Environ Sci Pollut Res 22, 19394–19399 (2015). https://doi.org/10.1007/s11356-015-4354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4354-5

Keywords

Navigation