Skip to main content
Log in

Effects of copper on reserve mobilization in embryo of Phaseolus vulgaris L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present research reports a biochemical and micro-submicroscopic analysis of copper effect on reserve mobilization during germination of Phaseolus vulgaris L. var. soisson nain hatif seeds. Dry embryonic cells are rich in protein bodies and little starch grains. In Cu-treated embryos copper inhibited 50 % of albumin and globulin mobilization after 72 h imbibition. The severe alterations in treated embryo cells, observed by electron microscope, were probably the cause of the inability to utilize the amino acids freed by protein mobilization and so possibly the cause of the inhibition of P. vulgaris embryonic axis elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193

    Article  CAS  Google Scholar 

  • Bansal P, Sharma P, Dhinsda K (2001) Impact of Pb2+ and Cd2+ on activities of hydrolytic enzymes in germinating pea seeds. Ann Agri Bio Res 6:113–122

  • Bernal M, Ramiro MV, Cases R, Picorel R, Yrula I (2006) Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in glycine max cell suspensions. Physiol Plant 127:312–325

    Article  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Book  Google Scholar 

  • Bouazizi H, Jouili H, Geitmann A, El Ferjani E (2008) Effect of copper excess on H2O2 accumulation and peroxidase activities in bean roots. Acta Biol Hung 59:233–245

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chugh LK, Sawhney SK (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Pollut 92:1–5

    Article  CAS  Google Scholar 

  • Citharel L, Citharel J (1985) Protein bodies from the cotyledons of Cytisus scoparius L. (Link). Ultrastructure, isolation, and subunit composition of albumin, legumin and vicilin. Planta 166:39–45

    Article  CAS  Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level ecotoxicology. In Gerrit S, Bernd M (eds) III. Bioaccumulation and biological effects of chemicals. Wiley and Spektrum Akademischer Verlag, pp 586–620

  • Gori P (1977) Ponceau 2R staining on semi-thin sections of tissues fixed in glutaraldehyde-osmium tetroxide and embedded in epoxy resins. J Microsc 110:163–165

    Article  CAS  Google Scholar 

  • Jaouani K, Chaoui A, El Ferjani E (2012) Alteration of cotyledonary globulins and albumins mobilization in pea exposed to cadmium. Sci Res Essays 7:1273–1279

    CAS  Google Scholar 

  • Jiang L, Phillips TE, Rogers SW, Rogers JC (2000) Biogenesis of the protein storage vacuole crystalloid. J Cell Biol 150:755–770

    Article  CAS  Google Scholar 

  • Karmous I, El Ferjani E, Chaoui A (2011) Copper excess impairs mobilization of storage proteins in bean cotyledons. Biol Trace Elem Res 144:1251–1259

    Article  CAS  Google Scholar 

  • Karmous I, Khadija J, Chaoui A, El Ferjani E (2012) Proteolytic activities in Phaseolus vulgaris cotyledons under copper stress. Physiol Mol Biol Plants 18:337–343

    Article  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105

    Article  CAS  Google Scholar 

  • Lott JNA (1980) Protein bodies. In: Stumpf PK, Conn EE (eds) The biochemistry of plants. The plant cell, vol 1. Academic Press, New York, pp 589–623

    Google Scholar 

  • Mihoub A, Chaoui A, El Ferjani E (2005) Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). C R Biol 328:33–41

    Article  CAS  Google Scholar 

  • Mishra P, Dubey RS (2008) Effect of aluminium on metabolism of starch and sugars in growing rice seedlings. Acta Physiol Plant 30:265–275

    Article  CAS  Google Scholar 

  • Moore S, Stein WH (1954) A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem 211:907–913

    CAS  Google Scholar 

  • Mourato MP, Martins LL, Campos-Andrada MP (2009) Physiological responses of Lupinus luteus to different copper concentrations. Biol Plant 53:105–111

    Article  CAS  Google Scholar 

  • Muccifora S, Bellani LM (2013) Effects of copper on germination and reserve mobilization in Vicia sativa L. seeds. Environ Pollut 179:68–74

    Article  CAS  Google Scholar 

  • Muccifora S, Guerranti R, Muzzi C, Hope-Onyekwere NS, Pagani R, Leoncini R, Bellani LM (2010) Ultrastructural and biochemical investigations of protein mobilization of Mucuna pruriens (L.) DC. cotyledons and embryo axis. Protoplasma 239:15–21

    Article  CAS  Google Scholar 

  • Panou-Filotheou H, Bosabalidis AM (2004) Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum). Plant Sci 166:1497–1504

    Article  CAS  Google Scholar 

  • Rahoui S, Chaoui A, El Ferjani E (2008) Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiol Plant 30:451–456

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  Google Scholar 

  • Sfaxi-Bousbih A, Chaoui A, El Ferjani E (2010a) Unsuitable availability of nutrients in germinating bean embryos exposed to copper excess. Biol Trace Elem Res 135:295–303

    Article  CAS  Google Scholar 

  • Sfaxi-Bousbih A, Chaoui A, El Ferjani E (2010b) Copper affects the cotyledonary carbohydrate status during the germination of bean seed. Biol Trace Elem Res 137:110–116

    Article  CAS  Google Scholar 

  • Singh D, Nath K, Sharma YK (2007) Response of wheat seed germination and seedling growth under copper stress. J Environ Biol 28:409–414

    CAS  Google Scholar 

  • Walton DA, Wallace HM (2005) Ultrastructure of Macadamia (Proteaceae) embryos: implications for their breakage properties. Ann Bot 96:981–988

  • Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the Tunisian Ministry of Higher Education and Scientific Research (UR/11/ES-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Muccifora.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmous, I., Bellani, L.M., Chaoui, A. et al. Effects of copper on reserve mobilization in embryo of Phaseolus vulgaris L.. Environ Sci Pollut Res 22, 10159–10165 (2015). https://doi.org/10.1007/s11356-015-4208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4208-1

Keywords

Navigation