Skip to main content
Log in

Approach to spatialize local to long-range atmospheric metal input (Cd, Cu, Hg, Pb) in epiphytic lichens over a meso-scale area (Pyrénées-Atlantiques, southwestern France)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Geographically based investigations into atmospheric bio-monitoring usually provide information on concentration or occurrence data and spatial trends of specific contaminants over a specified study area. In this work, an original approach based on geographic information system (GIS) was used to establish metal contents (Hg, Cu, Pb, and Cd) in epiphytic lichens from 90 locations as atmospheric bio-monitors over a meso-scale area (Pyrénées-Atlantiques, southwestern France). This approach allows the integration of the heterogeneity of the territory and optimization of the sampling sites based on both socioeconomical and geophysical parameters (hereafter defined as urban, industrial, agricultural, and forested areas). The sampling strategy was first evaluated in several sites (n = 15) over different seasons and years in order to follow the temporal variability of the atmospheric metal input in lichens. The results demonstrate that concentration ranges remain constant over different sampling periods in “rural” areas (agricultural and forested). Higher variability is observed in the “anthropized” urban and industrial areas in relation to local atmospheric inputs. In this context, metal concentrations in lichens over the whole study show that (1) Hg and Cd are homogeneous over the whole territory (0.14 ± 0.04 and 0.38 ± 0.26 mg/kg, respectively), whereas (2) Cu and Pb are more concentrated in “anthropized” areas (9.3 and 11.9 mg/kg, respectively) than in “rural” ones (6.8 and 6.0 mg/kg, respectively) (Kruskall-Wallis, K(Cu) = 13.7 and K(Pb) = 9.7, p < 0.00001). They also showed a significant local enrichment for all metals in many locations in the Pays Basque (West) mainly due to metal and steel industrial activities. This confirms the local contribution of this contamination source over a wider geographic scale. A multiple linear regression model was applied to give an integrated spatialization of the data. This showed significant relationships for Pb and Cu (adjusted r 2 of 0.39 and 0.45, respectively), especially with regards to variables such as industry and road densities (source factors) and elevation or water balance (remote factors). These results show that an integrated GIS-based sampling strategy can improve biomonitoring data distribution and allows better differentiation of local and long-range contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achotegui-Castells A, Sardans J, Ribas À, Peñuelas J (2013) Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environ Monit Assess 185:615–29. doi:10.1007/s10661-012-2579-z

    Article  CAS  Google Scholar 

  • AFNOR (2008) Biomonitoring of environment-Determination of Biological Index of Epiphytic Lichens (BIEL).

  • Agnan Y, Séjalon-Delmas N, Probst A (2013) Comparing early twentieth century and present-day atmospheric pollution in SW France: A story of lichens. Environ Pollut 172:139–48. doi:10.1016/j.envpol.2012.09.008

    Article  CAS  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53:214–222. doi:10.1007/s10535-009-0042-y

    Article  Google Scholar 

  • Bargagli R, Monaci F, Borghini F (2002) Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in. Environ Pollut 116:279–287

    Article  CAS  Google Scholar 

  • Basile A, Sorbo S, Aprile G (2008) Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ Pollut 151:401–407. doi:10.1016/j.envpol.2007.07.004

    Article  CAS  Google Scholar 

  • Brunialti G, Frati L (2007) Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span. Sci Total Environ 387:289–300. doi:10.1016/j.scitotenv.2007.06.033

    Article  CAS  Google Scholar 

  • Carignan J, Libourel G, Cloquet C, Le Forestier L (2005) Lead isotopic composition of fly ash and flue gas residues from municipal solid waste combustors in France: implications for atmospheric lead source tracing. Environ Sci Technol 39:2018–24

    Article  CAS  Google Scholar 

  • CITEPA/CORALIE/format SECTEN (2009) Inventory of emissions of air pollutants in France- sectoral series and extensive analyzes. 306

  • CITEPA/format SECTEN (2012) Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en France series sectorielles et analyses étendues. 334

  • Conti ME, Cecchetti G (2001) Biological monitoring : lichens as bioindicators of air pollution assessment - a review. Environ Pollut 114:471–492

    Article  CAS  Google Scholar 

  • Cuny D, Davranche L, Thomas P et al (2004) Spatial and temporal variations of trace element contents in Xanthoria parietina thalli collected in a highly industrialized area in Northern France as an element for a future epidemiological study. J Atmos Chem 49:391–401. doi:10.1007/s10874-004-1254-3

    Article  CAS  Google Scholar 

  • Doucet F, Carignan J (2001) Atmospheric Pb isotopic composition and trace metal concentration as revealed by epiphytic lichens:: an investigation related to two altitudinal sections in Eastern. Atmos. Environ. 35:

  • EMEP (2011) Heavy metals: Transboundary Pollution of the Environment. Status Rep

  • EMEP (2013) Meteorogical Synthesizing Centre-East. http://www.msceast.org/index.php?option=com_content&view=article&id=122&Itemid=53. Accessed 3 Apr 2013

  • Estrabou C, Filippini E, Soria JP et al (2011) Air quality monitoring system using lichens as bioindicators in Central Argentina. Environ Monit Assess 182:375–83. doi:10.1007/s10661-011-1882-4

    Article  Google Scholar 

  • Estrade N, Carignan J, Donard OFX (2010a) Isotope tracing of atmospheric mercury sources in an urban area of Northeastern France. Environ Sci Technol 44:6062–6067. doi:10.1021/es100674a

    Article  CAS  Google Scholar 

  • Estrade N, Carignan J, Sonke JE, Donard OFX (2010b) Measuring Hg isotopes in bio-geo-environmental reference materials. Geostand Geoanalytical Res 34:79–93

    Article  CAS  Google Scholar 

  • French Ministry of Ecology and Sustainable Development and Energy (2013) Registre Français des Emissions Polluantes. http://www.irep.ecologie.gouv.fr/IREP/index.php

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371

    Article  CAS  Google Scholar 

  • Garty J, Weissman L, Cohen Y (2001) Transplanted lichens in and around the Mount Carmel National Park and the Haifa Bay industrial region in Israel: physiological and chemical responses. Environ Res Sect A 85:159–176. doi:10.1006/enrs.2000.4222

    Article  CAS  Google Scholar 

  • Gerdol R, Marchesini R, Iacumin P, Brancaleoni L (2014) Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere 108:388–395. doi:10.1016/j.chemosphere.2014.02.035

    Article  CAS  Google Scholar 

  • Giordano S, Adamo P, Spagnuolo V et al (2013) Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique. Chemosphere 90:292–9. doi:10.1016/j.chemosphere.2012.07.006

    Article  CAS  Google Scholar 

  • Johansson C, Norman M, Burman L (2009) Road traffic emission factors for heavy metals. Atmos Environ 43:4681–4688. doi:10.1016/j.atmosenv.2008.10.024

    Article  CAS  Google Scholar 

  • Kularatne KIA, de Freitas CR (2013) Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environ Exp Bot 88:24–32. doi:10.1016/j.envexpbot.2012.02.010

    Article  CAS  Google Scholar 

  • Lebourgeois F, Piedallu C (2005) Assessing drought severity for the purposes of ecological studies and forest management using bioclimatic indices. Rev For française 57:331–356

    Article  Google Scholar 

  • Loppi S, Pirintsos S (2003) Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (Central Italy). Environ Pollut 121:327–332

    Article  CAS  Google Scholar 

  • Loppi S, Frati L, Paoli L et al (2004) Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (Central Italy). Sci Total Environ 326:113–22. doi:10.1016/j.scitotenv.2003.12.003

    Article  CAS  Google Scholar 

  • Monna F, Bouchaou L, Rambeau C et al (2011) Lichens used as monitors of atmospheric pollution around Agadir (southwestern Morocco)—a case study predating lead-free gasoline. Water Air Soil Pollut 223:1263–1274. doi:10.1007/s11270-011-0942-2

    Article  Google Scholar 

  • Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298

    Article  CAS  Google Scholar 

  • Pacyna JM, Pacyna EG, Aas W (2009) Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmos Environ 43:117–127. doi:10.1016/j.atmosenv.2008.09.066

    Article  CAS  Google Scholar 

  • Rizzio E, Bergamaschi L (2001) Trace elements determination in lichens and in the airborne particulate matter for the evaluation of the atmospheric pollution in a region of Northern Italy. Environ Int 26:543–549

    Article  CAS  Google Scholar 

  • Russell Flegal A, Gallon C, Hibdon S et al (2010) Declining-but persistent-atmospheric contamination in central California from the resuspension of historic leaded gasoline emissions as recorded in the lace lichen (Ramalina menziesii Taylor) from 1892 to 2006. Environ Sci Technol 44:5613–5618. doi:10.1021/es100246e

    Article  Google Scholar 

  • Rusu A-M, Jones GC, Chimonides PDJ, Purvis OW (2006) Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant. Environ Pollut 143:81–8. doi:10.1016/j.envpol.2005.11.002

    Article  CAS  Google Scholar 

  • Sardans J, Montes F, Peñuelas J (2010) Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc 65:97–112. doi:10.1016/j.sab.2009.11.009

    Article  Google Scholar 

  • Scerbo R, Ristori T, Possenti L et al (2002) Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sci Total Environ 286:27–40

    Article  CAS  Google Scholar 

  • Schroeder W, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822

    Article  CAS  Google Scholar 

  • Selin NE, Jacob DJ, Park RJ et al (2007) Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. J Geophys Res 112:1–14. doi:10.1029/2006JD007450

    Google Scholar 

  • Sternbeck J, Sjödin Å, Andréasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36:4735–4744. doi:10.1016/S1352-2310(02)00561-7

    Article  CAS  Google Scholar 

  • Szczepaniak KÃ, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res 93:221–230. doi:10.1016/S0013-9351(03)00141-5

    Article  CAS  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282. doi:10.1016/j.scitotenv.2008.06.007

    Article  CAS  Google Scholar 

  • Tømmervik H, Johansen ME, Pedersen JP, Guneriussen T (1998) Integration of remote sensed and in-situ data in an analysis of the air pollution effects on terrestrial ecosystems in the border areas between Norway and Russia. Environ Monit Assess 49:51–85. doi:10.1023/A:1005755706302

    Article  Google Scholar 

  • Veschambre S (2006) Characterization and quantification of trace metals elements in atmospheric particles and deposits in the Aspe valley - Establishment of indicators of Air Quality. UPPA

  • Veschambre S, Moldovan M, Amouroux D et al (2008) Import of atmospheric trace metal elements in the Aspe valley and Somport tunnel (Pyrénées Atlantiques, France): level of contamination and evaluation of emission sources. Pollut Atmosphérique 198–199:215–234

    Google Scholar 

Download references

Acknowledgement

This project was supported by the Conseil Général des Pyrénées-Atlantiques and Aquitaine region. The authors would like to thank Régine Maury-Brachet for her assistance during Hg analyses and Nicolas Estrade for his help during the sampling campaign. The authors would also like to thanks the Serlabo Technologies for the loan of the GFAAS ContrAA 700. Julien Barre is grateful to CNRS-INEE and UPPA for his doctoral fellowship (ED211). Our thanks to Rosie Cox for her help to improve the English of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien P. G. Barre.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barre, J.P.G., Deletraz, G., Frayret, J. et al. Approach to spatialize local to long-range atmospheric metal input (Cd, Cu, Hg, Pb) in epiphytic lichens over a meso-scale area (Pyrénées-Atlantiques, southwestern France). Environ Sci Pollut Res 22, 8536–8548 (2015). https://doi.org/10.1007/s11356-014-3990-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3990-5

Keywords

Navigation