Skip to main content
Log in

Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In ants, intra and inter-colony variation in body size can be considerable, even in monomorphic species. It has been previously shown that size-related parameters can be environmentally sensitive. The shape of the body size distribution curve is, however, rarely investigated. In this study, we measured head widthes of the black garden ant Lasius niger workers using digital methods. The ants were sampled from 51 colonies originating from 19 sites located along a metal pollution gradient, established in a former mining area in Poland. Total zinc concentrations in random samples of small invertebrates were used as a measure of site pollution levels. We found that the skewness of head size distribution grows significantly in line with the pollution level of the site, ranging from values slightly below zero (about −0.5) in the least polluted site up to a positive value (about 1.5) in the most polluted site. This result indicates that the frequency of small ants grows as pollution levels increase. The coefficient of variation, as well as the measures of central tendency, was not related to the pollution level. Four hypotheses explaining the obtained results are proposed. The bias towards the higher frequency of small workers may result from energy limitation and/or metal toxicity, but may also have an adaptive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ardestani MM, van Gestel CAM (2013) Dynamic bioavailability of copper in soil estimated by uptake and elimination kinetics in the springtail Folsomia candida. Ecotoxicology 22:308–318. doi:10.1007/s10646-012-1027-8

    Article  CAS  Google Scholar 

  • Aron S, Steinhauer N, Fournier D (2009) Influence of queen phenotype, investment and maternity apportionment on the outcome of fights in cooperative foundations of the ant Lasius niger. Anim Behav 77:1067–1074. doi:10.1016/j.anbehav.2009.01.009

    Article  Google Scholar 

  • Billick I (2002) The relationship between the distribution of worker sizes and new worker production in the ant Formica neorufibarbis. Oecologia 132:244–249. doi:10.1007/s00442-002-0976-7

    Article  Google Scholar 

  • Billick I, Carter C (2007) Testing the importance of the distribution of worker sizes to colony performance in the ant species Formica obscuripes Forel. Insect Soc 54:113–117. doi:10.1007/s00040-007-0918-9

    Article  Google Scholar 

  • Boshoff M, Jordaens K, Backeljau T, Lettens S, Tack F, Vandecasteele B, De Jonge M, Bervoets L (2013) Organ- and species-specific accumulation of metals in two land snail species (Gastropoda, Pulmonata). Sci Total Environ 449:470–481. doi:10.1016/j.scitotenv.2013.02.003

    Article  CAS  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, Wien

    Book  Google Scholar 

  • Butovsky RO (2011) Heavy metals in carabids (Coleoptera, Carabidae). Zookeys: 215–222. doi: 10.3897/zookeys.100.1529

  • Cervera A, Maymo AC, Sendra M, Martinez-Pardo R, Garcera MD (2004) Cadmium effects on development and reproduction of Oncopeltus fasciatus (Heteroptera: Lygaeidae). J Insect Physiol 50:737–749. doi:10.1016/j.jinsphys.2004.06.001

    Article  CAS  Google Scholar 

  • Chytrý M (ed) (2007) Vegetation of the Czech Republic 1. Grassland and heathland vegetation. Academia, Praha

    Google Scholar 

  • Clemencet J, Cournault L, Odent A, Doums C (2010) Worker thermal tolerance in the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). Insect Soc 57:11–15. doi:10.1007/s00040-009-0044-y

    Article  Google Scholar 

  • Czechowski W, Czechowska RA, Vespäläinen W (2012) The ants of Poland. Natura optina dux Foundation, Warszawa

    Google Scholar 

  • Davidson DW (1978) Size variability in worker caste of a social insect (Veromessor pergandei Mayr) as a function of competitive environment. Am Nat 112:523–532. doi:10.1086/283294

    Article  Google Scholar 

  • Ding P, Zhuang P, Li Z, Xia H, Lu H (2013) Accumulation and detoxification of cadmium by larvae of Prodenia litura (Lepidoptera: Noctuidae) feeding on Cd-enriched amaranth leaves. Chemosphere 91:28–34. doi:10.1016/j.chemosphere.2012.11.038

    Article  CAS  Google Scholar 

  • Eeva T, Sorvari J, Kolvunen V (2004) Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ Pollut 132:533–539. doi:10.1016/j.envpol.2004.05.004

    Article  CAS  Google Scholar 

  • Fjerdingstad EJ (2005) Control of body size of Lasius niger ant sexuals—worker interests, genes and environment. Mol Ecol 14:3123–3132. doi:10.1111/j.1365-294X.2005.02648.x

    Article  Google Scholar 

  • Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167:390–400. doi:10.1086/499545

    Article  Google Scholar 

  • Fountain MT, Hopkin SP (2001) Continuous monitoring of Folsomia candida (Insecta : Collembola) in a metal exposure test. Ecotoxicol Environ Safe 48:275–286. doi:10.1006/eesa.2000.2007

    Article  CAS  Google Scholar 

  • Gouws EJ, Gaston KJ, Chown SL (2011) Intraspecific body size frequency distributions of insects. PLoS ONE 6(3):e16606. doi:10.1371/journal.pone.0016606

    Article  Google Scholar 

  • Graff S, Berkus M, Alberti G, Kohler HR (1997) Metal accumulation strategies in saprophagous and phytophagous soil invertebrates: a quantitative comparison. Biometals 10:45–53. doi:10.1023/a:1018366703974

    Article  Google Scholar 

  • Gramigni E et al (2013) Ants as bioaccumulators of metals from soils: body content and tissue-specific distribution of metals in the ant Crematogaster scutellaris. Eur J Soil Biol 58:24–31. doi:10.1016/j.ejsobi.2013.05.006

    Article  CAS  Google Scholar 

  • Grześ IM (2009) Ant species richness and evenness increase along a metal pollution gradient in the Boleslaw zinc smelter area. Pedobiologia 53:65–73. doi:10.1016/j.pedobi.2009.03.002

    Article  Google Scholar 

  • Grześ IM (2010a) Ants and heavy metal pollution—a review. Eur J Soil Biol 46:350–355. doi:10.1016/j.ejsobi.2010.09.004

    Article  Google Scholar 

  • Grześ IM (2010b) Zinc and cadmium regulation efficiency in three ant species originating from a metal pollution gradient. B Environ Contam Toxicol 84:61–65. doi:10.1007/s00128-009-9893-3

    Article  Google Scholar 

  • Grześ IM (2010c) Zinc tolerance in the ant species Myrmica rubra originating from a metal pollution gradient. Eur J Soil Biol 46:87–90. doi:10.1016/j.ejsobi.2009.11.005

    Article  Google Scholar 

  • Haatanen M-K, Sorvari J (2013) Similarity of body size in queens of the wood ant Formica aquilonia from optimal and sub-optimal habitats indicates a strong heritable component. J Insect Sci 13:115, http://www.insectscience.org/13.115

    Article  Google Scholar 

  • Hare L (1992) Aquatic insects and trace-metals—bioavailability, bioaccumulation, and toxicity. CRC Crit Rev Toxicol 22:327–369. doi:10.3109/10408449209146312

    Article  CAS  Google Scholar 

  • Heinze J, Foitzik S, Fischer B, Wanke T, Kipyatkov VE (2003) The significance of latitudinal variation in body size in a holarctic ant, Leptothorax acervorum. Ecography 26:349–355. doi:10.1034/j.1600-0587.2003.03478.x

    Article  Google Scholar 

  • Holec M, Frouz J, Pokorny R (2006) The influence of different vegetation patches on the spatial distribution of nests and the epigeic activity of ants (Lasius niger) on a spoil dump after brown coal mining (Czech Republic). Eur J Soil Biol 42:158–165. doi:10.1016/j.ejsobi.2005.12.005

    Article  Google Scholar 

  • Holldöbler B, Wilson EO (1990) Caste and division of labor. In: Holldöbler B, Wilson EO (eds) The ants. Springer, Berlin Heidelberg, pp 310–311

    Chapter  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211. doi:10.2307/1942661

    Article  Google Scholar 

  • Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, Sih A (2014) Behavioural syndromes and social insects: personality at multiple levels. Biol Rev 89:48–67. doi:10.1111/brv.12042

    Article  Google Scholar 

  • Łagisz M (2008) Changes in morphology of the ground beetle Pterostichus oblongopunctatus F. (Coleoptera; Carabidae) from vicinities of a zinc and lead smelter. Environ Toxicol Chem 27:1744–1747. doi:10.1897/07-661.1

    Article  Google Scholar 

  • Laskis KO, Tschinkel WR (2009) The seasonal natural history of the ant, Dolichoderus mariae, in northern Florida. J Insect Sci 9:2, http://www.insectscience.org/9.2

    Article  Google Scholar 

  • Linksvayer TA, Janssen MA (2009) Traits underlying the capacity of ant colonies to adapt to disturbance and stress regimes. Syst Res Behav Sci 26:315–329. doi:10.1002/sres.928

    Article  Google Scholar 

  • Migula P, Głowacka E (1996) Heavy metals as stressing factors in the red wood ants (Formica polyctena) from industrially polluted forests. Fresenius J Anal Chem 354:653–659. doi:10.1007/s0021663540653

    CAS  Google Scholar 

  • Moroń D, Grześ IM, Skórka P, Szentgyörgyi H, Laskowski R, Potts SG, Woyciechowski M (2012) Abundance and diversity of wild bees along gradients of heavy metal pollution. J Appl Ecol 49:118–125. doi:10.1111/j.1365-2664.2011.02079.x

    Article  Google Scholar 

  • Oster GF, Wilson OE (1978) The evolution of physical casts in ants. In: Oster GF, Wilson OE (eds) Caste and ecology in the social insects. Princeton University Press, 130–135

  • Porter SD, Tschinkel WR (1985a) Fire ant polymorphism (hymenoptera, formicidae)—factors affecting worker size. Ann Entomol Soc Am 78:381–386

    Article  Google Scholar 

  • Porter SD, Tschinkel WR (1985b) Fire ant polymorphism—the ergonomics of brood production. Behav Ecol Sociobiol 16:323–336. doi:10.1007/bf00295545

    Article  Google Scholar 

  • Powell S, Franks NR (2006) Ecology and the evolution of worker morphological diversity: a comparative analysis with Eciton army ants. Funct Ecol 20:1105–1114. doi:10.1111/j.1365-2435.2006.01184.x

    Article  Google Scholar 

  • Rabitsch WB (1997) Seasonal metal accumulation patterns in the red wood ant Formica pratensis (Hymenoptera) at contaminated and reference sites. J Appl Ecol 34:1455–1461. doi:10.2307/2405261

    Article  CAS  Google Scholar 

  • Rasse P, Deneubourg JL (2001) Dynamics of nest excavation and nest size regulation of Lasius niger (Hymenoptera : Formicidae). J Insect Behav 14:433–449. doi:10.1023/a:1011163804217

    Article  Google Scholar 

  • Rutkowski L (2004) A key to identification of vascular plants of lowland Poland (in Polish). PWN, Warszawa

    Google Scholar 

  • Schmid-Hempel P (1992) Worker castes and adaptive demography. J Evol Biol 5:1–12. doi:10.1046/j.1420-9101.1992.5010001.x

    Article  Google Scholar 

  • Schwander T, Rosset H, Chapuisat M (2005) Division of labour and worker size polymorphism in ant colonies: the impact of social and genetic factors. Behav Ecol Sociobiol 59:215–221. doi:10.1007/s00265-005-0027-6

    Article  Google Scholar 

  • Shu Y, Gao Y, Sun H, Zou Z, Zhou Q, Zhang G (2009) Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecotoxicol Environ Safe 72:2130–2136. doi:10.1016/j.ecoenv.2009.06.004

    Article  CAS  Google Scholar 

  • Sorvari J, Hakkarainen H (2009) Forest clear-cutting causes small workers in the polydomous wood ant Formica aquilonia. Ann Zool Fenn 46:431–438. doi:10.5735/086.046.0604

    Article  Google Scholar 

  • Stary P, Kubiznàkovà J (1987) Content and transfer of heavy metal air pollutants in populations of Formica spp. wood ants (Hym., Formicidae). J Appl Ecol 104:1–10

    CAS  Google Scholar 

  • Stefanowicz AM, Woch MW, Kapusta P (2014) Inconspicuous waste heaps left by historical Zn–Pb mining are hot spots of soil contamination. Geoderma 235–236. doi: 10.1016/j.geoderma.2014.06.020

  • Stone D, Jepson P, Kramarz P, Laskowski R (2001) Time to death response in carabid beetles exposed to multiple stressors along a gradient of heavy metal pollution. Environ Pollut 113:239–244. doi:10.1016/s0269-7491(00)00134-2

    Article  CAS  Google Scholar 

  • van Straalen NM, Donker MH, Vijver MG, van Gestel CAM (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136:409–417. doi:10.1016/j.envpol.2005.01.019

    Article  Google Scholar 

  • Wilczek G, Babczynska A, Majkus Z (2005) Body burdens of metals in spiders from the Lidice coal dump near Ostrava (Czech Republic). Biologia 60:599–605. doi:10.1007/s10646-012-0906-3

    Google Scholar 

  • Wilson EO (1953) The origin and evolution of polymorphism in ants. Q Rev Biol 28:136–156

    Article  CAS  Google Scholar 

  • Woch MW (2011) Xerothermic vegetation of fallow lands in western Małopolska. Ann UMCS Biol 66:105–120. doi:10.2478/v10067-011-0022-4

    Google Scholar 

  • Yamauchi K, Yoshida T, Ogawa T, Itoh S, Ogawa Y, Jimbo S, Imai HT (2001) Spermatogenesis of diploid males in the formicine ant, Lasius sakagamii. Insect Soc 48:28–32. doi:10.1007/PL00001741

    Article  Google Scholar 

  • Żmudzki S, Laskowski R (2012) Biodiversity and structure of spider communities along a metal pollution gradient. Ecotoxicology 21:1523–1532. doi:10.1007/s10646-012-090

    Article  Google Scholar 

  • Zygmunt PMS, Maryanski M, Laskowski R (2006) Body mass and caloric value of the ground beetle (Pterostichus oblongopunctatus) (Coleoptera, Carabidae) along a gradient of heavy metal pollution. Environ Toxicol Chem 25:2709–2714. doi:10.1897/05-580r.1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The National Science Center (NCN), grant 2011/01/D/NZ8/00167 and partially by the University of Agriculture, BM 4220. We are grateful to Tomer Czaczkes for helpful comments and corrections that improved the manuscript. We thank Ryszard Laskowski for his advice and useful discussion. We also thank Anna Stefanowicz, Magdalena Witek and Sławomir Mitrus for critical reading of the earlier version of the manuscript and Patrycja Gibas for performing these metal analysis. Katarzyna Wardzała, Patrycja Żywiec and Beata Ślusarczyk assisted in the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena M. Grześ.

Additional information

Responsible editor: Philippe Garrigue

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grześ, I.M., Okrutniak, M. & Woch, M.W. Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient. Environ Sci Pollut Res 22, 6126–6134 (2015). https://doi.org/10.1007/s11356-014-3808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3808-5

Keywords

Navigation