Skip to main content
Log in

Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Solid-phase microextraction (SPME) was used to determine the equilibrium association constant for a pesticide, trifluralin (TFR), with dissolved organic matter (DOM). After optimization of the SPME method for the analysis of TFR, partition coefficients (K DOM) with three different sources of DOM were determined in buffered solutions at pH 7. Commercial humic acids and DOM fractions isolated from two surface waters were used. The values of log K DOM varied from 4.3 to 5.8, depending on the nature of the organic material. A good correlation was established between log K DOM and DOM properties (as measured with the H/O atomic ratio and UV absorbance), in agreement with literature data. This is consistent with the effect of polarity and aromaticity for governing DOM-pollutant associations, regardless of the origin of DOM. This association phenomenon is relevant to better understand the behavior of pesticides in the environment since it controls part of pesticide leaching and fate in aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AFNOR NF T90-210 (2009) Water quality—protocol for the initial method performance assessment in a laboratory. Association Française de Normalisation (AFNOR), France, pp 1–43

    Google Scholar 

  • Aguer JP, Richard C, Andreux F (1999) Effects of light on humic substances: production of reactive species. Analusis 27(5):387–390

    Article  CAS  Google Scholar 

  • Bachman J, Patterson HH (1999) Photodecomposition of the carbamate pesticide carbofuran: kinetics and the influence of dissolved organic matter. Environ Sci Technol 33(6):874–881

    Article  CAS  Google Scholar 

  • Bejarano AC, Chandler GT, Decho AW (2005) Influence of natural dissolved organic matter (DOM) on acute and chronic toxicity of the pesticides chlorothalonil, chlorpyrifos and fipronil on the meiobenthic estuarine copepod Amphiascus tenuiremis. J Exp Mar Biol Ecol 321(1):43–57

    Article  CAS  Google Scholar 

  • Boithias L, Sauvage S, Taghavi L, Merlina G, Probst J-L, Sánchez Pérez JM (2011) Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods. J Hazard Mater 196:210–219

    Article  CAS  Google Scholar 

  • Carabias-Martínez R, García-Hermida C, Rodríguez Gonzalo E, Soriano-Bravo FE, Hernández-Méndez J (2003) Determination of herbicides, including thermally labile phenylureas, by solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr A 1002(1–2):1–12

    Article  Google Scholar 

  • Carter WC, Suffet IH (1982) Binding of DDT to dissolved humic materials. Environ Sci Technol 16(11):735–740

    Article  CAS  Google Scholar 

  • Chen S, Inskeep WP, Williams SA, Callis PR (1994) Fluorescence lifetime measurements of fluoranthene, 1-naphthol, and napropamide in the presence of dissolved humic acid. Environ Sci Technol 28(9):1582–1588

    Article  CAS  Google Scholar 

  • Chiou CT, Malcolm RL, Brinton TI, Kile DE (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol 20(5):502–508

    Article  CAS  Google Scholar 

  • Chiou CT, Kile DE, Brinton TI, Malcolm RL, Leenheer JA, MacCarthy P (1987) A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environ Sci Technol 21(12):1231–1234

    Article  CAS  Google Scholar 

  • Cox L, Celis R, Hermosin MC, Cornejo J, Zsolnay A, Zeller K (2000) Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter. Environ Sci Technol 34(21):4600–4605

    Article  CAS  Google Scholar 

  • Croué JP, Korshin GV, Benjamin M (1999) Isolation, fractionation and characterization of natural organic matter in drinking water. AWWA Research Foundation and American Water Works Association, Denver, 324p

    Google Scholar 

  • De Paolis F, Kukkonen J (1997) Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material. Chemosphere 34(8):1693–1704

    Article  Google Scholar 

  • Dimou AD, Sakkas VA, Albanis TA (2004) Trifluralin photolysis in natural waters and under the presence of isolated organic matter and nitrate ions: kinetics and photoproduct analysis. J Photochem Photobiol A Chem 163:473–480

    Article  CAS  Google Scholar 

  • Din JY, Wu SC (1995) Partition coefficients of organochlorine pesticides on soil and on the dissolved organic matter in water. Chemosphere 30(12):2259–2266

    Article  Google Scholar 

  • Ding Q, Wu H, Xu Y, Guo L, Liu K, Gao H, Yang H (2011) Impact of low molecular weight organic acids and dissolved organic matter on sorption and mobility of isoproturon in two soils. J Hazard Mater 190(1–3):823–832

    Article  CAS  Google Scholar 

  • Gauthier TD, Seltz WR, Grant CL (1987) Effects of structural and compositional variations of dissolved humic materials on pyrene KOC values. Environ Sci Technol 21(3):243–248

    Article  CAS  Google Scholar 

  • Holt MS (2000) Sources of chemical contaminants and routes into the freshwater environment. Food Chem Toxicol 38(Suppl 1):S21–S27

    Article  CAS  Google Scholar 

  • Ilani T, Schulz E, Chefetz B (2005) Interactions of organic compounds with wastewater dissolved organic matter: role of hydrophobic fractions. J Environ Qual 34(2):552–562

    Article  CAS  Google Scholar 

  • Konstantinou I, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141(3):555–570

    Article  CAS  Google Scholar 

  • Kopinke F-D, Georgi A, MacKenzie K (2001) Sorption of pyrene to dissolved humic substances and related model polymers. 1. Structure-property correlation. Environ Sci Technol 35(12):2536–2542

    Article  CAS  Google Scholar 

  • Kubicki JD, Apitz SE (1999) Models of natural organic matter and interactions with organic contaminant. Org Geochem 30(8 B):911–927

    Article  CAS  Google Scholar 

  • Kulikova NA, Perminova IV (2002) Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environ Sci Technol 36(17):3720–3724

    Article  CAS  Google Scholar 

  • Labouyrie-Rouillier L (1997) Extraction et caractérisation des matières organiques naturelles dissoutes d’eaux de surface: Etude comparative des techniques de filtration membranaire et d’adsorption sur résines macroporeuses non ioniques. PhD thesis, Université de Poitiers

  • Landrum PF, Nlhart SR, Eadle BJ, Gardner WS (1984) Reverse-phase separation method for determining pollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters. Environ Sci Technol 18(3):187–192

    Article  CAS  Google Scholar 

  • Lee S, Gan J, Liu WP, Anderson MA (2003) Evaluation of Kd underestimation using solid phase microextraction. Environ Sci Technol 37(24):5597–5602

    Article  CAS  Google Scholar 

  • Legube B, Croué JP, De Laat J, Doré M (1989) Ozonation of an extracted aquatic fulvic acid: theoretical and practical aspects. Ozone-Sci Eng 11(1):69–92

    Article  CAS  Google Scholar 

  • Li Q, Xu X, Lee FS-C, Wang X (2006) Determination of trace PAHs in seawater and sediment pore-water by solid-phase microextraction (SPME) coupled with GC/MS. Sci China Ser B 49(6):481–491

    Article  CAS  Google Scholar 

  • Lundqvist A, Bertilsson S, Goedkoop W (2012) Interactions with DOM and biofilms affect the fate and bioavailability of insecticides to invertebrate grazers. Ecotoxicology 21(8):2398–2408

    Article  CAS  Google Scholar 

  • MacKenzie K, Georgi A, Kumke M, Kopinke F-D (2002) Sorption of pyrene to dissolved humic substances and related model polymers. 2. Solid-phase microextraction (SPME) and fluorescence quenching technique (FQT) as analytical methods. Environ Sci Technol 36(20):4403–4409

    Article  CAS  Google Scholar 

  • Maloschik E, Ernst A, Hegedűs G, Darvas B, Székács A (2007) Monitoring water-polluting pesticides in Hungary. Microchem J 85(1):88–97

    Article  CAS  Google Scholar 

  • Martin-Mousset B, Croué JP, Lefèbvre E, Legube B (1997) Distribution et caractérisation de la matière organique dissoute d’eaux naturelles de surface. Water Res 31(3):541–553

    Article  CAS  Google Scholar 

  • Monteil-Rivera F, Brouwer EB, Masset S, Deslandes Y, Dumoncwater J (2000) Combination of X-ray photoelectron and solid-state 13C nuclear magnetic resonance spectroscopy in the structural characterisation of humic acids. Anal Chim Acta 424(2):243–255

    Article  CAS  Google Scholar 

  • Mott HV (2002) Association of hydrophobic organic contaminants with soluble organic matter: evaluation of the database of Kdoc values. Adv Environ Res 6(4):577–593

    Article  CAS  Google Scholar 

  • Ohlenbusch G, Kumke MU, Frimmel FH (2000) Sorption of phenols to dissolved organic matter investigated by solid phase microextraction. Environ Sci Technol 253(1–3):63–74

    CAS  Google Scholar 

  • Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley, New York, pp 11–41

    Google Scholar 

  • Pinto MI, Sontag G, Bernardino RJ, Noronha JP (2010) Pesticides in water and the performance of the liquid-phase microextraction based techniques. A review. Microchem J 96(2):225–237

    Article  CAS  Google Scholar 

  • Poerschmann J, Kopinke F-D (2001) Sorption of very hydrophobic organic compounds (VHOCs) on dissolved humic organic matter (DOM). 2. Measurement of sorption and application of a Flory-Huggins concept to interpret the data. Environ Sci Technol 35(6):1142–1148

    Article  CAS  Google Scholar 

  • Poerschmann J, Kopinke F-D, Pawliszyn J (1997a) Solid phase microextraction to study the sorption of organotin compounds onto particulate and dissolved humic organic matter. Environ Sci Technol 31(12):3629–3636

    Article  CAS  Google Scholar 

  • Poerschmann J, Zhang Z, Kopinke F-D, Pawliszyn J (1997b) Solid phase microextraction for determining the distribution of chemicals in aqueous matrices. Anal Chem 69(4):597–600

    Article  CAS  Google Scholar 

  • Prosen H, Fingler S, Zupancic-Kralj L, Drevenkar V (2007) Partitioning of selected environmental pollutants into organic matter as determined by solid-phase microextraction. Chemosphere 66(8):1580–1589

    Article  CAS  Google Scholar 

  • Sánchez-Camazano M, Sánchez-Martín MJ, Poveda E, Iglesias-Jiménez E (1996) Study of the effect of exogenous organic matter on the mobility of pesticides in soils using soil thin-layer chromatography. J Chromatogr A 754(1–2):279–284

    Article  Google Scholar 

  • Scheyer A, Morville S, Mirabel P, Millet M (2006) Analysis of trace levels of pesticides in rainwater using SPME and GC-tandem mass spectrometry. Anal Bioanal Chem 384(2):475–487

    Article  CAS  Google Scholar 

  • Scheyer A, Briand O, Morville S, Mirabel P, Millet M (2007) Analysis of trace levels of pesticides in rainwater by SPME and GC-tandem mass spectrometry after derivatisation with PFFBr. Anal Bioanal Chem 387(1):359–368

    Article  CAS  Google Scholar 

  • Seol Y, Lee LS (2000) Effects of dissolved organic matter in treated effluents on sorption of atrazine and prometryn by soils. Soil Sci Soc Am J 64:1976–1983

    Article  CAS  Google Scholar 

  • Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298(1–3):147–161

    Article  CAS  Google Scholar 

  • Tanaka F, Fukushima M, Kikuchi A, Yabuta H, Ichikawa H, Tatsumi K (2005) Influence of chemical characteristics of humic substances on the partition coefficient of a chlorinated dioxin. Chemosphere 58(10):1319–1326

    Article  CAS  Google Scholar 

  • Thevenot M, Dousset S, Hertkorn N, Schmitt-Kopplin P, Andreux F (2009) Interactions of diuron with dissolved organic matter from organic amendments. Sci Total Environ 407(14):4297–4302

    Article  CAS  Google Scholar 

  • Thurman EM (1985) Developments in biochemistry: organic geochemistry of natural waters. Nijhoff and Junk, Dordrecht

    Book  Google Scholar 

  • Tomlin CDS (1997) The pesticide manual, 11th edn. British Crop Protection Council, Surrey, pp 443–734

    Google Scholar 

  • Urrestarazu ER, Meijer SM, Vaes WHJ, Verhaar HJM, Hermens JML (1998) Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ Sci Technol 32(21):3430–3435

    Article  Google Scholar 

  • Water Framework Directive 2000/60/EC of the European Parliament (2000) A framework for community action in the field of water policy. Off J Eur Commun L327:1–73

    Google Scholar 

  • Worrall F, Fernandez-Perez M, Johnson AC, Flores-Cesperedes F, Gonzalez-Pradas E (2000) Limitations on the role of incorporated organic matter in reducing pesticide leaching. J Contam Hydrol 49:241–262

    Article  Google Scholar 

  • Xue N, Xu X, Jin Z (2005) Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir. Chemosphere 61(11):1594–1606

    Article  CAS  Google Scholar 

  • Zepp RG, Schlotzhauer PF, Sink RM (1985) Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances. Environ Sci Technol 19(1):74–81

    Article  Google Scholar 

  • Zepp RG, Braun AM, Hoigné J, Leenheer JA (1987) Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environ Sci Technol 21(5):485–490

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Centre National de la Recherche Scientifique for the financial support of part of this study in the frame of the program EC2CO—Cytrix. Emilie Caupos thanks the Region Poitou-Charentes and CNRS for providing her the financial support of her PhD thesis. The authors are very grateful to Dr. Le Roux for his comments on the manuscript and to C. Lorgeoux for her expertise on statistical validation of analytical methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Mazellier.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caupos, E., Touffet, A., Mazellier, P. et al. Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS. Environ Sci Pollut Res 22, 4201–4212 (2015). https://doi.org/10.1007/s11356-014-3614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3614-0

Keywords

Navigation