Skip to main content
Log in

Analysis of trace levels of pesticides in rainwater using SPME and GC–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A multiresidue method using gas chromatography coupled to ion trap tandem mass spectrometry (GC–ITD–MS/MS) associated with solid phase microextraction (SPME) was developed for the analysis of 20 pesticides commonly used in the Alsace region in rainwater samples. Since the pesticides were expected to be present at very low concentrations and in complex matrices, the analytical method used was both highly selective and sensitive. Therefore, fibers coated with polyacrylate (PA), polydimethylsiloxane (PDMS) and polydimethylsiloxane-divinylbenzene (PDMS-DVB) were tested, and the parameters affecting the precision and accuracy of the SPME method were investigated and optimized. These parameters include the type of fiber, the adsorption time, the effect of salt, and the extraction temperature. The PDMS fiber was the most polyvalent for the extractions of the different pesticides studied. Detection limits of between 5 and 500 ng L−1, depending on the compounds under study (except for those which could not be analyzed: captan and mevinphos), were obtained with this analytical procedure. This method was applied to the analysis of rainwater samples collected simultaneously on a weekly basis at one rural and one urban site between March 2002 and July 2003. While some of the 20 pesticides analyzed were constantly detected (such as lindane and atrazine), a strong temporal variability was observed for some of the others (including alachlor, metolachlor, atrazine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sanusi A, Millet M, Mirabel Ph, Wortham H (1999) Atmos Environ 33:4941–4951

    Article  CAS  Google Scholar 

  2. Abbot DC, Harrison RB, Tatton JOG, Thomson J (1965) Nature 208:1317–1318

    Article  Google Scholar 

  3. Tarrant KR, Tatton JOG (1968) Nature 219:725–726

    Article  PubMed  CAS  Google Scholar 

  4. Millet M, Wortham H, Sanusi A, Mirabel Ph (1997) Environ Sci Pollut Res 4(3):172–180

    Article  CAS  Google Scholar 

  5. Briand O, Seux R, Millet M, Clément M (2002) Rev Sci Eau 15 :767–787

    CAS  Google Scholar 

  6. de Rossi C, Bierl R, Riefstahl J (2003) Phys Chem Earth 28:307–314

    Google Scholar 

  7. Grynkiewicz M, Polkowska Z, Gorecki T, Namiesñik J (2003) Water Air Soil Pollut 149:3–16

    Article  CAS  Google Scholar 

  8. Quaghebeur D, De Smet B, De Wulf E, Steurbaut W (2004) J Environ Monit 6:182–190

    Article  PubMed  CAS  Google Scholar 

  9. Chevreuil M, Garmouma M, Teil M-J, Chesterikoff A (1996) Sci Total Environ 182:25–37

    Article  PubMed  CAS  Google Scholar 

  10. Barcelo D (1993) J Chromatogr A 643:117–143

    Article  CAS  Google Scholar 

  11. Albanis TA, Hela DG (1995) J Chromatogr A 707:283–292

    Article  CAS  Google Scholar 

  12. Epple J, Maguhn J, Spitzauer P, Kettrup A (2002) Geoderma 105:327–349

    Article  CAS  Google Scholar 

  13. Sampedro MC, Martin O, Lopez de Armentia C, Goicolea MA, Rodriguez E, Gomez de Balugera Z, Costa–Moreira J, Barrio RJ (2000) J Chromatogr A 893:347–358

    Article  PubMed  CAS  Google Scholar 

  14. Sauret N, Millet M, Herckes P, Mirabel Ph, Wortham H (2000) Environ Poll 110:243–252

    Article  CAS  Google Scholar 

  15. Scheyer A, Morville S, Mirabel Ph, Millet M (2005) Anal Bioanal Chem 381:1226–1233

    Article  PubMed  CAS  Google Scholar 

  16. Aguilar C, Penalver S, Pocurull E, Borrull F, Marce RM (1998) J Chromatogr A 795:105–115

    Article  CAS  Google Scholar 

  17. Sauret N (2002) PhD thesis. University of Strasbourg, pp 230

  18. Beltran J, Lopez FJ, Hernandez F (2000) J Chromatogr A 885:389–404

    Article  PubMed  CAS  Google Scholar 

  19. Dugay J, Miege C, Hennion M-C (1998) J Chromatogr A 795:27–42

    Google Scholar 

  20. Gonçalves C, Alpendurada MF (2002) J Chromatogr A 963:19–26

    Article  PubMed  Google Scholar 

  21. Lambropoulou DA, Konstantinou IK, Albanis TA (2000) J Chromatogr A 893:143–156

    Article  PubMed  Google Scholar 

  22. Lambropoulou DA, Albanis TA (2001) J Chromatogr A 922:243–255

    Article  PubMed  CAS  Google Scholar 

  23. Lord H, Pawliszyn J (2000) J Chromatogr A 885:153–193

    Article  PubMed  CAS  Google Scholar 

  24. Louch D, Motlagu S, Pawliszyn J (1992) Anal Chem 64:1187–1199

    Article  CAS  Google Scholar 

  25. Eisert R, Levsen K (1995) Am Soc Mass Spectrom 6:1119–1130

    Google Scholar 

  26. Hernandez F, Beltran J, Lopez FJ, Gaspar JV (2000) Anal Chem 72:2313–2322

    Article  PubMed  CAS  Google Scholar 

  27. Pi–Guey S, Huang S–D (1999) Talanta 49:393–402

    Article  Google Scholar 

  28. Lode O, Eklo OM, Holen B, Svensen A, Johnsen AM (1995) Sci Total Environ 160/161:421–431

    Article  Google Scholar 

  29. Huskes R, Levsen K (1997) Chemosphere 35:3013–3024

    Article  PubMed  CAS  Google Scholar 

  30. Unsworth JB, Wauchope RD, Klein AW, Dorn E, Zeeh B, Yeh SM, Akerblom, M, Racke KD, Rubin B (1999) Pure Appl Chem 71:1359–1383

    Article  CAS  Google Scholar 

  31. Scheyer A, Morville S, Mirabel Ph, Millet M (2005) Chemosphere 58:1517–1524

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thanks the “Region Alsace”, the “DRIRE Alsace” and the French Ministry of Ecology and Sustainable Development through the Primequal-2 program for their financial support. Anne Scheyer particularly thanks ADEME and “Région Alsace” for their financial support of her PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Millet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheyer, A., Morville, S., Mirabel, P. et al. Analysis of trace levels of pesticides in rainwater using SPME and GC–tandem mass spectrometry. Anal Bioanal Chem 384, 475–487 (2006). https://doi.org/10.1007/s00216-005-0176-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0176-5

Keywords

Navigation