Skip to main content

Advertisement

Log in

Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Interest in use of flax (Linum usitatissimum L.) as cadmium (Cd)-accumulating plant for phytoextraction of contaminated soils opened up a new and promising avenue toward improving tolerance of its varieties and cultivars to Cd stress. The aim of this study is to get insights into the mechanisms of Cd detoxification in cell membranes, by exploring the effects of salicylic acid (SA)-induced priming on fatty acids and lipid composition of flax plantlets, grown for 10 days with 50 and 100 μM Cd. At leaf level, levels of monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), phosphatidylglycerol (PG), and neutral lipids (NL) have shifted significantly in flax plantlets exposed to toxic CdCl2 concentrations, as compared to that of the control. At 100 μM Cd, the linoleic acid (C18:2) decreases mainly in digalactosyldiacylglycerol (DGDG) and all phospholipid species, while linolenic acid (C18:3) declines mostly in MGDG and NL. Conversely, at the highest concentration of the metal, SA significantly enhances the levels of MGDG, PG and phosphatidic acid (PA), and polyunsaturated fatty acids mainly C18:2 and C18:3. Furthermore, SA pretreatment seems to reduce the Cd-induced alterations in both plastidial and extraplastidial lipid classes, but preferentially preserves the plastidial lipids by acquiring higher levels of polyunsaturated fatty acids. These results suggest that flax plantlets pretreated with SA exhibits more stability of their membranes under Cd-stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    Article  CAS  Google Scholar 

  • Andresen E, Küpper H (2013) Cadmium toxicity in plants. Met Ions Life Sci 11:395–413

    Article  CAS  Google Scholar 

  • Aronsson H, Schöttler M, Kelly A, Sundqvist C, Dörmann P, Karim S, Jarvis P (2008) Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol 148:580–592

    Article  CAS  Google Scholar 

  • Avis TJ, Bélanger RR (2001) Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67:956–960

    Article  CAS  Google Scholar 

  • Belkadhi A, Hediji H, Abbes Z, Djebali W, Chaïbi W (2012) Influence of salicylic acid pretreatment on cadmium tolerance and its relationship with non-protein thiol production in flax root. Afr J Biotechnol 11:9788–9796

    CAS  Google Scholar 

  • Belkadhi A, De Haro A, Soengas P, Obregόn S, Cartea ME, Djebali W, Chaïbi W (2013) Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium. OMICS 17:398–406

    Article  CAS  Google Scholar 

  • Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:1004–1011

    Article  CAS  Google Scholar 

  • Ben Youssef N, Nouairi I, Ben Temime S, Taamalli W, Zarrouk M, Ghorbal MH, Ben Miled Daoud D (2005) Cadmium effects on lipid metabolism of rape (Brassica napus L.). C R Biol 328:745–757

    Article  CAS  Google Scholar 

  • Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S (2012) Lipids of plant membrane rafts. Prog Lipid Res 51:272–299

    Article  CAS  Google Scholar 

  • Chen HJ, Hou WC, Kuc J, Lin YH (2001) Ca2+−dependent and Ca2+- independent excretion modes of salicylic acid in tobacco cell suspension culture. J Exp Bot 52:1219–1226

    Article  CAS  Google Scholar 

  • Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    Article  CAS  Google Scholar 

  • Cullen WR, Bentley R (2005) The toxicity of trimethylarsine: an urban myth. J Environ Monit 7:11–15

    Article  CAS  Google Scholar 

  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chaïbi W (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:258–368

    Article  Google Scholar 

  • Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R (2008) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227:625–639

    Article  CAS  Google Scholar 

  • Fagioni M, DoAmici GM, Timperio AM, Zolla L (2009) Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J Proteome Res 8:310–326

    Article  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica 4:281–284

    Article  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Garcés R, Mancha M (1993) One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem 211:139–143

    Article  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    Article  CAS  Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modifications of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J Exp Bot 48:1375–1381

    Article  CAS  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 11:2991–3007

    Article  Google Scholar 

  • Ivanova A, Krantev A, Stoynova ZH, Popova L (2008) Cadmium-induced changes in maize leaves and the protective role of salicylic acid. Gen Appl Plant Physiol 34:149–158

    CAS  Google Scholar 

  • Jiang WS, Liu DH, Hou WQ (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of Allium sativum L. Bioresour Technol 76:9–13

    Article  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46:37–55

    Article  CAS  Google Scholar 

  • Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, Kachroo P (2003) Plastidial fatty acid signaling modulates salicylic acid and jasmonic acid mediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell 15:2952–2965

    Article  CAS  Google Scholar 

  • Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P (2007) The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol 63:257–271

    Article  CAS  Google Scholar 

  • Kamthan A, Kamthan M, Azam M, Chakraborty N, Chakraborty S, Datta A (2012) Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality. Sci Rep 2:951

    Article  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant. doi:10.1007/s11738-014-1603-z

    Google Scholar 

  • Karenlampi S, Schat H, Vangronsveld J, Verkleij JAC, Vander Lelie D, Mergeay M, Tervahauta AL (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  CAS  Google Scholar 

  • Kim PM, Lu L, Xia Y, Gerstein M (2006) Relating 3D structures to protein networks provides evolutionary insight. Science 314:1938–1941

    Article  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  Google Scholar 

  • Krinke O, Flemr M, Vergnolle C, Collin S, Renou JP, Taconnat L, Yu A, Burketova L, Valentova O, Zachowski A, Ruelland E (2009) Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiol 150:424–436

    Article  CAS  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Article  Google Scholar 

  • Kuznetsova TY, Vetchinnikova LV, Titov AF, Il’inova MK (2008) Effect of cadmium on fatty acid composition of lipids in the shoots of Karelian birch cultured in vitro. Russ J Plant Physiol 55:731–737

    Article  Google Scholar 

  • Le Guédard M, Faure O, Bessoule JJ (2012) Soundness of in situ lipid biomarker analysis: early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ Exp Bot 76:54–59

    Article  Google Scholar 

  • Li Y, Li CH, Zheng YH, Wu GL, Wuyun TN, Xu H, He X, Jiang G (2011) Cadmium pollution enhanced ozone damage to winter wheat: biochemical and physiological evidences. J Environ Sci 23:255–265

    Article  CAS  Google Scholar 

  • Li X, Ma L, Bu N, Li Y, Zhang L (2014) Effects of salicylic acid pre-treatment on cadmium and/or UV-B stress in soybean seedlings. Biol Plant 58:195–199

    Article  CAS  Google Scholar 

  • Liu S, Dong Y, Xu L, Kong J (2014) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–78

    Article  CAS  Google Scholar 

  • Lorizate M, Kräusslich HG (2011) Role of lipids in virus replication. Cold Spring Harb Perspect Biol 3(10):a004820. doi:10.1101/cshperspect.a004820

    Article  Google Scholar 

  • Mane SP, Vasquez-Robinet C, Sioson AA, Heath LS, Grene R (2007) Early PLD alpha-mediated events in response to progressive drought stress in Arabidopsis: a transcriptome analysis. J Exp Bot 58:241–252

    Article  CAS  Google Scholar 

  • Mazliak P (1980) Synthesis and turn-over of plant membrane phospholipids. Prog Phytochem 6:49–102

    CAS  Google Scholar 

  • Mishra A, Choudhuri MA (1999) Effect of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plant 42:409–415

    Article  CAS  Google Scholar 

  • Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1:194–208

    Article  Google Scholar 

  • Moussa HR, EL-Gamal SM (2010) Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol Plant 54:315–320

    Article  CAS  Google Scholar 

  • Nichols BW (1965) Light-induced chances in the lipids of Chlorella vulgaris. Biochim Biophys Acta 106:274–279

    Article  CAS  Google Scholar 

  • Panda SK, Patra HK (2007) Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. Leaves. Acta Physiol Plant 29:567–575

    Article  CAS  Google Scholar 

  • Rainteau D, Humbert L, Delage E, Vergnolle C, Cantrel C, Maubert MA, Lanfranchi S, Maldiney R, Collin S, Claude W, Zachowski A, Ruelland E (2012) Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry. PLoS One 7:e41985. doi:10.1371/journal.pone.0041985

    Article  CAS  Google Scholar 

  • Saluja B, Sharma V (2013) Cadmium resistance mechanism in acidophilic and alkalophilic bacterial isolates and their application in bioremediation of metal-contaminated soil. Soil Sediment Contam. doi:10.1080/15320383.2013.772094

    Google Scholar 

  • Sanz A, Lamas A, Ullrich CI (2009) Distinctive phytotoxic effects of Cd and Ni on membrane functionality. Plant Signal Behav 4:980–982

    Article  CAS  Google Scholar 

  • Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190

    Article  CAS  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2007) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85

    Article  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Towards understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:1–9

    Article  Google Scholar 

  • Trinchella F, Riggio M, Filosa S, Volpe MGE, Scudiero R (2006) Cadmium distribution and metallothionein expression in lizard tissues following acute and chronic intoxication. Comp Biochem Physiol C Toxicol Pharmarcol 144:272–278

    Article  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) “Omics” analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  Google Scholar 

  • Uzunova AN, Popova LP (2000) Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38:243–250

    Article  CAS  Google Scholar 

  • Valderrama A, Tapia J, Peñailillo P, Carvajal DE (2012) Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water Environ J 27:293–300

    Google Scholar 

  • Verdoni N, Mench M, Cassagne C, Bessoule JJ (2001) Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ Toxicol Chem 20:382–388

    Article  CAS  Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  CAS  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Whitaker BD (1991) Changes in lipids of tomato fruit stored at chilling and non-chilling temperatures. Phytochemistry 30:757–761

    Article  CAS  Google Scholar 

  • Zawoznik M, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

  • Zhang WN, Chen WL (2011) Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana. Photochem Photobiol Sci 10:947–955

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Higher Education, Scientific Research and Technology in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wahbi Djebali.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkadhi, A., De Haro, A., Obregon, S. et al. Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress. Environ Sci Pollut Res 22, 1457–1467 (2015). https://doi.org/10.1007/s11356-014-3475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3475-6

Keywords

Navigation