Skip to main content
Log in

Anaerobic treatability of liquid residue from wet oxidation of sewage sludge

  • Effective management of sewage sludge
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Wet Oxidation (WO) of sewage sludge is a chemical oxidation of sludge at high temperatures and pressures by means of an oxygen-containing gas. The liquid stream originated by WO is easily biodegradable, and therefore, the recirculation to the biological Waste Water Treatment Plant (WWTP) may be a feasible solution. However, the WO effluent has a residual organic and nitrogen content so that its treatment may be required when the receiving WWTP has no surplus treatment capacity left. The aim of this research was the assessment of the anaerobic treatability of the WO liquid residue, in order to reduce the organic load to be recirculated to the WWTP, simultaneously promoting energy recovery. For this purpose, the liquid residue obtained during full scale WO tests on two different types of sludge was submitted to anaerobic digestion in a continuous flow pilot reactor (V = 5 L). Furthermore, batch tests were carried out in order to evaluate possible inhibition factors. Experimental results showed that, after the start-up/acclimation period (~130 days), Chemical Oxygen Demand (COD) removal efficiency was stably around 60 % for about 120 days, despite the change in operating conditions. In the last phase of the experimental activity, COD removal reached 70 % under the following treatment conditions: Hydraulic Retention Time (HRT) = 20 days, Volumetric Organic Loading Rate (VOLR) = 0.868 kg COD/m3/day, Organic Loading Rate per Volatile Suspended Solids (OLRvss) = 0.078 kg COD/kg VSS/day, temperature (T) = 36.5 °C, pH = 8. Energy balance calculation demonstrated anaerobic treatment sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe N, Tang YQ, Iwamura M, Ohta H, Morimura S, Kida K (2011) Development of an efficient process for the treatment of residual sludge discharged from an anaerobic digester in a sewage treatment plant. Bioresour Technol 102:7641–7644

    Article  CAS  Google Scholar 

  • Abe N, Tang YQ, Iwamura M, Morimura S, Kida K (2013) Pretreatment followed by anaerobic digestion of secondary sludge for reduction of sewage sludge volume. Water Sci Technol 67(11):2527–2533

    Article  CAS  Google Scholar 

  • APAT-IRSA/CNR (2003) Analytical methods for water quality control. APAT Handbooks and Guidelines 29/2003, Rome (in Italian)

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of anaerobic digestion of waste-activated sludge. Prog Energy Combust 34:755–781

    Article  CAS  Google Scholar 

  • Baroutian S, Smit AM, Gapes DJ (2013) Relative influence of process variables during non-catalytic wet oxidation of municipal sludge. Bioresour Technol 148:605–610

    Article  CAS  Google Scholar 

  • Brulé M, Bolduan R, Seidelt S, Schlagermann P, Bott A (2013) Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops. Environ Technol 34(13–14):2047–2058

    Article  Google Scholar 

  • Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 32:1634–1650

    Article  CAS  Google Scholar 

  • Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15

    Article  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Chen H, Yang G, Feng Y, Shi C, Xu S, Cao W, Zhang X (2012) Biodegradability enhancement of coking wastewater by catalytic wet air oxidation using aminated activated carbon as catalyst. Chem Eng J 198–199:45–51

    Article  Google Scholar 

  • Collado S, Laca A, Diaz M (2012) Decision criteria for the selection of wet oxidation and conventional biological treatment. J Environ Manag 102:65–70

    Article  CAS  Google Scholar 

  • Costa JC, Barbosa SG, Sousa DZ (2012) Effects of pre-treatment and bioaugmentation strategies on the anaerobic digestion of chicken feathers. Bioresour Technol 120:114–119

    Article  CAS  Google Scholar 

  • Debellefontaine H, Chakchouk M, Foussard JN, Tisso D, Striolo P (1996) Treatment of organic aqueous wastes, wet air oxidation and wet peroxide oxidation. Environ Pollut 92(2):155–164

    Article  CAS  Google Scholar 

  • Debellefontaine H, Crispel S, Reilhac P, Perie F, Foussard JN (1999) Wet air oxidation (WAO) for treatment of industrial wastewater and domestic sludge. Design of bubble column reactors. Chem Eng Sci 54:4953–4959

    Article  CAS  Google Scholar 

  • Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources. An introduction. Wiley, Weinheim

    Google Scholar 

  • Devlin HR, Harris IJ (1984) Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Ind Eng Chem Fundam 23:387–392

    Article  CAS  Google Scholar 

  • Duprez D, Delanoe F, Barbier J Jr, Isnard P, Blanchard G (1996) Catalytic oxidation of organic compounds in aqueous media. Catal Today 29:317–322

    Article  CAS  Google Scholar 

  • Eckenfelder WW Jr (1970) Water quality engineering for practicing engineers. Barnes & Noble, New York

    Google Scholar 

  • Fezzani B, Cheikh RB (2008) Optimisation of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a batch digester. Desalination 228:159–167

    Article  CAS  Google Scholar 

  • Foladori P, Andreottola G, Ziglio G (2010) Sludge reduction technologies in wastewater treatment plants. IWA Publishing, London

    Google Scholar 

  • Foussard JN, Debellefontaine H, Besombes VJ (1989) Effective elimination of organic liquid wastes: wet air oxidation. Environ Eng 115:367

    Article  CAS  Google Scholar 

  • Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sust Energ Rev 12:116–140

    Article  CAS  Google Scholar 

  • Genç N, Yonsel Ş, Dağaşan L, Nur Onar A (2002) Wet oxidation: a pre-treatment procedure for sludge. Waste Manag 22:611–616

    Article  Google Scholar 

  • Gielen GJH, Love SR, Lei RJ, Gapes DJ, Strong PJ, McGrouther KG, Stuthridge TR (2011) Wet oxidation technology—a potential biosolids management alternative. IPENZ Trans 2

  • Jang HM, Kim JH, Ha JH, Park JM (2014) Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour Technol 165:174–182

    Article  CAS  Google Scholar 

  • Joglekar HS, Samant SD, Joshi JB (1991) Kinetics of wet oxidation of phenol and substituted phenols. Water Res 25(2):135–145

    Article  CAS  Google Scholar 

  • Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114(4):446–452

    Article  CAS  Google Scholar 

  • Khan Y, Anderson GK, Elliott DJ (1999) Wet oxidation of activated sludge. Water Res 33(7):1681–1687

    Article  CAS  Google Scholar 

  • Kim J, Park C, Kim TH, Lee M, Kim S, Kim SW, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95(3):271–275

    Article  CAS  Google Scholar 

  • Lee JH, Park JJ, Byun IG, Park TJ, Lee TH (2014) Anaerobic digestion of organic wastewater from chemical fiber manufacturing plant: lab and pilot-scale experiments. J Ind Eng Chem 20:1732–1736

    Article  CAS  Google Scholar 

  • Liu Y, Tay JH (2001) Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol Adv 19:97–107

    Article  Google Scholar 

  • Luck F (1999) Wet air oxidation, past, present and future. Catal Today 53:81–91

    Article  CAS  Google Scholar 

  • Mahmood T, Elliott A (2006) A review of secondary sludge reduction technlogies for the pulp and paper industry. Water Res 40:2093–2112

    Article  CAS  Google Scholar 

  • Masotti L (2011) Depurazione delle acque. Tecniche ed impianti per il trattamento delle acque di rifiuto (Wastewater treatment. Technologies and plants for wastewater treatment). Calderini (in Italian)

  • Mishra VS, Mahajani VV, Joshi JB (1995) Wet air oxidation. Ind Eng Chem Res 34:2–48

    Article  CAS  Google Scholar 

  • Mucha J, Zarzycki R (2008) Analysis of wet oxidation process after initial thermohydrolysis of excess sewage sludge. Water Res 42:3025–3032

    Article  CAS  Google Scholar 

  • Neyens E, Baeyens J, Dewil R, De Heyder B (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater 106B:83–92

    Article  Google Scholar 

  • OECD guidelines for the testing of chemicals 311 (2006) Anaerobic biodegradability of organic compounds in digested sludge: by measurement of gas production

  • Padoley KV, Tembhekar PD, Saratchandra T, Pandit AB, Pandey RA, Mudliar SN (2012) Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent. Bioresour Technol 120:157–164

    Article  CAS  Google Scholar 

  • Pérez-Elvira SI, Nieto Diez P, Fdz Polanco F (2006) Sludge minimisation technologies. Rev Environ Sci Bio/Technol 5:375–398

    Article  Google Scholar 

  • Ploos van Amstel JJAP (1971) The oxidation of sewage sludge in the liquid water phase at elevated temperatures and pressures (wet-air oxidation). PhD thesis, Eindhoven University of Technology, Netherlands

  • Ploos van Amstel JJA, Rietema K (1973) Wet-air oxidation of sewage sludge part II: the oxidation of real sludges. Chem Ing Tech 45:1205–1211

    Article  Google Scholar 

  • Roy S, Vashishtha M, Saroha AK (2010) Catalytic wet air oxidation of oxalic acid using platinum catalyst in bubble column reactor: a review. J Eng Sci Technol Rev 3(1):95–107

    CAS  Google Scholar 

  • Ruiz-Hernando M, Labanda J, Llorens J (2010) Effect of ultrasonic waves on the rheological features of secondary sludge. Biochem Eng J 52:131–136

    Article  CAS  Google Scholar 

  • Saveyn H, Curvers D, Thas O, Van der Meeren P (2008) Optimization of sewage sludge conditioning and pressure dewatering by statistical modelling. Water Res 42:1061–1074

    Article  CAS  Google Scholar 

  • Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64(2):139–151

    Article  CAS  Google Scholar 

  • Seiler GS (1987) Twenty five years of sludge management by wet oxidation. Sludge Manag Ser 17:100–105

    CAS  Google Scholar 

  • Shanableh A (2000) Production of useful organic matter from sludge hydrothermal treatment. Water Res 34(3):945–951

    Article  CAS  Google Scholar 

  • Sigmund C (2008) Teoria e pratica della depurazione delle acque reflue. Procedure di smaltimento e progettazione (Theory and practice of wastewater treatment.Disposal procedures and design). Dario Flaccovio Ed., Palermo (in Italian)

  • Slavik E, Galessi R, Salvetti R, Bertanza G (2013) Experiences of sludge treatment by wet oxidation in “Effective sewage sludge management”, Quaderni de “La Ricerca Scientifica”, Chapter 8, 115-130, Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Acque, Roma

  • Stillwell AS, Hoppock DC, Webber ME (2010) Energy recovery from wastewater treatment plants in the United States: a case study of the energy-water nexus. Sustainability 2:945–962

    Article  Google Scholar 

  • Strehlenert RW (1911) Swedish Patent 34, 941

  • Strong PJ, Gapes DJ (2012) Thermal and thermo-chemical pre-treatment of four waste residues and the effect on acetic acid production and methane synthesis. Waste Manag 32:1669–1677

    Article  CAS  Google Scholar 

  • Strong PJ, McDonald B, Gapes DJ (2011) Combined thermochemical and fermentative destruction of municipal biosolids: a comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresour Technol 102(9):5520–5527

    Article  CAS  Google Scholar 

  • Svardal K, Kroiss H (2011) Energy requirements for waste water treatment. Water Sci Technol 64(6):1355–1361

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2004) Wastewater engineering, treatment and reuse. McGraw Hill, New York

  • Uma Rani R, Adish Kumar S, Kaliappan S, Yeom I, Rajesh Banu J (2013) Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge. Waste Manag 33:1119–1127

    Article  CAS  Google Scholar 

  • Uma Rani R, Adish Kumar S, Kaliappan S, Yeom I, Rajesh Banu J (2014) Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. Ultrason Sonochem 21:1065–1074

    Article  CAS  Google Scholar 

  • Weemaes MPJ, Verstraete WH (1998) Evaluation of current wet sludge disintegration techniques. J Chem Technol Biotechnol 73:83–92

    Article  CAS  Google Scholar 

  • Yang X, Wang X, Wang L (2010) Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process. Bioresour Technol 101:2580–2584

    Article  CAS  Google Scholar 

  • Zerva C, Peschos Z, Poulopoulos SG, Philippopoulos CJ (2003) Treatment of industrial oily wastewaters by wet oxidation. J Hazard Mater 97:257–265

    Article  CAS  Google Scholar 

  • Zimmermann FJ (1958) New waste disposal process. Chem Eng 25:117–120

    Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Seventh Programme for research, technological development, and demonstration under grant agreement No. 265156. Authors are grateful to the graduating students Maria Giulia Gaibotti, Diego Fisogni, and Luca Massolini for their valuable support during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Bertanza.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertanza, G., Galessi, R., Menoni, L. et al. Anaerobic treatability of liquid residue from wet oxidation of sewage sludge. Environ Sci Pollut Res 22, 7317–7326 (2015). https://doi.org/10.1007/s11356-014-3303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3303-z

Keywords

Navigation