Skip to main content
Log in

Characterization of top phase oil obtained from co-pyrolysis of sewage sludge and poplar sawdust

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To research the impact of adding sawdust on top phase oil, a sewage sludge and poplar sawdust co-pyrolysis experiment was performed in a fixed bed. Gas chromatography (GC)/mass spectrometry (MS) was used to analyze the component distribution of top phase oil. Higher heating value, viscosity, water content, and pH of the top phase oil product were determined. The highest top phase oil yield (5.13 wt%) was obtained from the mixture containing 15 % poplar sawdust, while the highest oil yield (16.51 wt%) was obtained from 20 % poplar sawdust. Top phase oil collected from the 15 % mixture also has the largest amount of aliphatics and the highest higher heating value (28.6 MJ/kg). Possible reaction pathways were proposed to explain the increase in the types of phenols present in the top phase oil as the proportion of poplar sawdust used in the mixture increased. It can be concluded that synergetic reactions occurred during co-pyrolysis of sewage sludge and poplar sawdust. The results indicate that the high ash content of the sewage sludge may be responsible for the characteristic change in the top phase oil obtained from the mixtures containing different proportions of sewage sludge and poplar sawdust. Consequently, co-pyrolysis of the mixture containing 15 % poplar sawdust can increase the yield and the higher heating value of top phase oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TPO:

Top phase oil

BPO:

Bottom phase oil

HHV:

Higher heating value, megajoules per kilogram

SS:

Sewage sludge

PS:

Poplar sawdust

25PS:

Mixture of SS and 25 % PS

L ' Mmax :

Theoretical maximum weight loss rate of 25PS

L Mmax :

Maximum weight loss rate of 25PS

L Smax :

Maximum weight loss rate of pure SS

L Pmax :

Maximum weight loss rate of pure PS

HNC:

Heterocyclic nitrogenated compounds

HC:

Hydrocarbons

References

  • Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79(3):277–299. doi:10.1016/s0960-8524(00)00180-2

    Article  CAS  Google Scholar 

  • Amutio M, Lopez G, Artetxe M, Elordi G, Olazar M, Bilbao J (2012) Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour Conserv Recycl 59(0):23–31. doi:10.1016/j.resconrec.2011.04.002

    Article  Google Scholar 

  • Bagreev A, Bandosz TJ, Locke DC (2001) Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 39(13):1971–1979. doi:10.1016/s0008-6223(01)00026-4

    Article  CAS  Google Scholar 

  • Bahadur NP, Boocock DGB, Konar SK (1995) Liquid hydrocarbons from catalytic pyrolysis of sewage sludge lipid and canola oil: evaluation of fuel properties. Energy Fuel 9(2):248–256. doi:10.1021/ef00050a007

    Article  CAS  Google Scholar 

  • Bandosz TJ, Block KA (2006) Removal of hydrogen sulfide on composite sewage sludge-industrial sludge-based adsorbents. Ind Eng Chem Re 45(10):3666–3672. doi:10.1021/ie0514152

    Article  CAS  Google Scholar 

  • Beckers W, Schuller D, Vaizert O (1999) Thermolytical treatment of dried sewage sludge and other biogenic materials: including upgrading of pyrolysis vapours by a cracking catalyst and examination of heavy metals by X-ray fluorescence. J Anal Appl Pyrol 50(1):17–30

    Article  CAS  Google Scholar 

  • Boucher ME, Chaala A, Pakdel H, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19(5):351–361. doi:10.1016/s0961-9534(00)00044-1

    Article  CAS  Google Scholar 

  • Bridle TR, Skrypski-Mantele S (2004) Experience and lessons learned from sewage sludge pyrolysis in Australia. Water Sci Technol 49(10):217–223

    CAS  Google Scholar 

  • Bridle T, Molinari L, Skrypsi-Mantele S, Ye P, Mills J (2000) Start-up of the Subiaco Enersludge (TM) plant. Water Sci Technol 41(8):31–36

    CAS  Google Scholar 

  • Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R (2011) Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol 102(13):7004–7007. doi:10.1016/j.biortech.2011.04.025

    Article  CAS  Google Scholar 

  • Cao J-P, Zhao X-Y, Morishita K, Wei X-Y, Takarada T (2010) Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge. Bioresour Technol 101(19):7648–7652. doi:10.1016/j.biortech.2010.04.073

    Article  CAS  Google Scholar 

  • Cao J-P, Xiao X-B, Zhang S-Y, Zhao X-Y, Sato K, Ogawa Y, Wei X-Y, Takarada T (2011) Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste. Bioresour Technol 102(2):2009–2015. doi:10.1016/j.biortech.2010.09.057

    Article  CAS  Google Scholar 

  • Cao J-P, Li L-Y, Morishita K, Xiao X-B, Zhao X-Y, Wei X-Y, Takarada T (2013) Nitrogen transformations during fast pyrolysis of sewage sludge. Fuel 104:1–6. doi: 10.1016/j.fuel.2010.08.015

    Google Scholar 

  • Cenni R, Janisch B, Spliethoff H, Hein KRG (2001) Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material. Waste Manag 21(1):17–31. doi:10.1016/s0956-053x(00)00074-x

    Article  CAS  Google Scholar 

  • Ding T, Li S, Xie J, Song W, Yao J, Lin W (2012) Rapid pyrolysis of wheat straw in a bench-scale circulating fluidized-bed Downer reactor. Chem Eng Technol 35(12):2170–2176. doi:10.1002/ceat.201200140

    Article  CAS  Google Scholar 

  • Duan P, Savage PE (2011) Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies. Energy Environ Sci 4(4):1447–1456. doi:10.1039/c0ee00343c

    Article  CAS  Google Scholar 

  • Faravelli T, Frassoldati A, Migliavacca G, Ranzi E (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34(3):290–301. doi:10.1016/j.biombioe.2009.10.018

    Article  CAS  Google Scholar 

  • Fonts I, Juan A, Gea G, Murillo MB, Arauzo J (2008a) Sewage sludge pyrolysis in a fluidized bed, 2: influence of operating conditions on some physicochemical properties of the liquid product. Ind Eng Chem Res 48(4):2179–2187. doi:10.1021/ie801448g

    Article  Google Scholar 

  • Fonts I, Juan A, Gea G, Murillo MB, Sánchez JL (2008b) Sewage sludge pyrolysis in fluidized bed, 1: influence of operational conditions on the product distribution. Ind Eng Chem Res 47(15):5376–5385. doi:10.1021/ie7017788

    Article  CAS  Google Scholar 

  • Fonts I, Gea G, Azuara M, Ábrego J, Arauzo J (2012) Sewage sludge pyrolysis for liquid production: a review. Renew Sustain Energy Rev 16(5):2781–2805. doi:10.1016/j.rser.2012.02.070

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2012) Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresour Technol 111:425–432. doi:10.1016/j.biortech.2012.01.141

    Article  CAS  Google Scholar 

  • Inguanzo M, Menendez JA, Fuente E, Pis JJ (2001) Reactivity of pyrolyzed sewage sludge in air and CO2. J Anal Appl Pyrol 58:943–954. doi:10.1016/s0165-2370(00)00143-1

    Article  Google Scholar 

  • Inguanzo M, DomInguez A, Menéndez JA, Blanco CG, Pis JJ (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J Anal Appl Pyrol 63(1):209–222. doi:10.1016/s0165-2370(01)00155-3

    Article  CAS  Google Scholar 

  • Ischia M, Maschio RD, Grigiante M, Baratieri M (2011) Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge. Waste Manag 31(1):71–77. doi:10.1016/j.wasman.2010.05.027

    Article  CAS  Google Scholar 

  • Kang B-S, Lee KH, Park HJ, Park Y-K, Kim J-S (2006) Fast pyrolysis of radiata pine in a bench scale plant with a fluidized bed: influence of a char separation system and reaction conditions on the production of bio-oil. J Anal Appl Pyrol 76(1–2):32–37. doi:10.1016/j.jaap.2005.06.012

    Article  CAS  Google Scholar 

  • Kim Y, Parker W (2008) A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour Technol 99(5):1409–1416. doi:10.1016/j.biortech.2007.01.056

    Article  CAS  Google Scholar 

  • Lee K-H, Kang B-S, Park Y-K, Kim J-S (2005) Influence of reaction temperature, pretreatment, and a char removal system on the production of bio-oil from rice straw by fast pyrolysis, using a fluidized bed. Energy Fuels 19(5):2179–2184. doi:10.1021/ef050015o

    Article  CAS  Google Scholar 

  • Li J, Wang C, Yang Z (2010) Production and separation of phenols from biomass-derived bio-petroleum. J Anal Appl Pyrol 89(2):218–224. doi:10.1016/j.jaap.2010.08.004

    Article  CAS  Google Scholar 

  • Matos J, Nahas C, Rojas L, Rosales M (2011) Synthesis and characterization of activated carbon from sawdust of Algarroba wood 1. Physical activation and pyrolysis. J Hazard Mater 196:360–369. doi:10.1016/j.jhazmat.2011.09.046

    Article  CAS  Google Scholar 

  • Muradov N, Fidalgo B, Gujar AC, T-Raissi A (2010) Pyrolysis of fast-growing aquatic biomass: Lemna minor (duckweed): characterization of pyrolysis products. Bioresour Technol 101(21):8424–8428. doi:10.1016/j.biortech.2010.05.089

    Article  CAS  Google Scholar 

  • Oasmaa A, Kuoppala E, Solantausta Y (2003) Fast pyrolysis of forestry residue. 2. Physicochemical composition of product liquid. Energy Fuels 17(2):433–443. doi:10.1021/ef020206g

    Article  CAS  Google Scholar 

  • Park ES, Kang BS, Kim JS (2008) Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants. Energy Fuels 22(2):1335–1340. doi:10.1021/ef700586d

    Article  CAS  Google Scholar 

  • Park HJ, Heo HS, Park YK, Yim JH, Jeon JK, Park J, Ryu C, Kim SS (2010) Clean bio-oil production from fast pyrolysis of sewage sludge: effects of reaction conditions and metal oxide catalysts. Bioresour Technol 101:S83–S85. doi:10.1016/j.biortech.2009.06.103

    Article  CAS  Google Scholar 

  • Pokorna E, Postelmans N, Jenicek P, Schreurs S, Carleer R, Yperman J (2009) Study of bio-oils and solids from flash pyrolysis of sewage sludges. Fuel 88(8):1344–1350. doi:10.1016/j.fuel.2009.02.020

    Article  CAS  Google Scholar 

  • Samanya J, Hornung A, Apfelbacher A, Vale P (2012) Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. J Anal Appl Pyrol 94:120–125. doi:10.1016/j.jaap.2011.11.017

    Article  CAS  Google Scholar 

  • Sánchez ME, Martínez O, Gómez X, Morán A (2007) Pyrolysis of mixtures of sewage sludge and manure: a comparison of the results obtained in the laboratory (semi-pilot) and in a pilot plant. Waste Manag 27(10):1328–1334. doi:10.1016/j.wasman.2006.07.015

    Article  Google Scholar 

  • Sanchez ME, Menendez JA, Dominguez A, Pis JJ, Martinez O, Calvo LF, Bernad PL (2009) Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenergy 33(6–7):933–940. doi:10.1016/j.biombioe.2009.02.002

    Article  CAS  Google Scholar 

  • Seredych M, Strydom C, Bandosz TJ (2008) Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents. Waste Manag 28(10):1983–1992. doi:10.1016/j.wasman.2007.08.020

    Article  CAS  Google Scholar 

  • Silva RVS, Romeiro GA, Veloso MCC, Figueiredo MKK, Pinto PA, Ferreira AF, Gonçalves MLA, Teixeira AM, Damasceno RN (2012) Fractions composition study of the pyrolysis oil obtained from sewage sludge treatment plant. Bioresour Technol 103(1):459–465. doi: 10.1016/j.biortech.2011.10.007

    Google Scholar 

  • Sınağ A, Uskan B, Gülbay S (2011) Detailed characterization of the pyrolytic liquids obtained by pyrolysis of sawdust. J Anal Appl Pyrol 90(1):48–52. doi:10.1016/j.jaap.2010.10.003

    Article  Google Scholar 

  • Sipilä K, Kuoppala E, Fagernäs L, Oasmaa A (1998) Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 14(2):103–113. doi:10.1016/s0961-9534(97)10024-1

    Article  Google Scholar 

  • Skrypsi-Mantele S, Bridle TR, Freeman P, Luceks A, Ye PD (2000) Production of high quality fuels using the enhanced Enersludge (TM) process. Water Sci Technol 41(8):45–51

    CAS  Google Scholar 

  • Tancredi N, Yerman L, Amaya A (2004) Production of activated carbon from Pinus elliotti sawdust. Ing Quim-Uruguay 26:3–6

    Google Scholar 

  • Wang XJ, Xu XM, Liang X, Wang Y, Liu M, Wang X, Xia SQ, Zhao JF, Yin DQ, Zhang YL (2011) Adsorption of copper(II) onto sewage sludge-derived materials via microwave irradiation. J Hazard Mater 192(3):1226–1233. doi:10.1016/j.jhazmat.2011.06.030

    Article  CAS  Google Scholar 

  • Yan M, Li XD, Yang J, Chen T, Lu SY, Buekens AG, Olie K, Yan JH (2012) Sludge as dioxins suppressant in hospital waste incineration. Waste Manag 32(7):1453–1458. doi:10.1016/j.wasman.2012.03.007

    Article  CAS  Google Scholar 

  • Yang Y, Brammer JG, Ouadi M, Samanya J, Hornung A, Xu HM, Li Y (2013) Characterisation of waste derived intermediate pyrolysis oils for use as diesel engine fuels. Fuel 105:247–257. doi:10.1016/j.fuel.2012.07.014

    Article  Google Scholar 

  • Zhang H, Yan Y, Yang L (2010) Preparation of activated carbon from sawdust by zinc chloride activation. Adsorption 16(3):161–166. doi:10.1007/s10450-010-9214-5

    Article  Google Scholar 

  • Zhang S, Wu N, Dong M, Lv G, Pan T (2011) Research on preparation of adsorbents by co-pyrolysis of sewage sludge with corn straw. J China Univ Min Technol 40(5):799–803

    CAS  Google Scholar 

  • Zhang J, Zhong Z, Zhao J, Yang M, Li W, Zhang H (2012) Study on the preparation of activated carbon for direct carbon fuel cell with oak sawdust. Can J Chem Eng 90(3):762–768. doi:10.1002/cjce.20549

    Article  CAS  Google Scholar 

  • Zuo W, Jin B, Huang Y, Sun Y, Li R, Jia J (2013) Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds. Bioresour Technol 127:44–48. doi:10.1016/j.biortech.2012.09.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from China MOE Special Research Funding for the Higher Education’s Doctoral Program (Priority Areas for Development) (201109213DD01), the Fundamental Research Funds for the Central Universities, Jiangsu Planned Projects for Postdoctoral Research Funds, the National Basic Research Program of China (973 Program, 2011CB201505), and the Foresight Research Program of STD Jiangsu Province, China (BY2011149).

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baosheng Jin.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, W., Jin, B., Huang, Y. et al. Characterization of top phase oil obtained from co-pyrolysis of sewage sludge and poplar sawdust. Environ Sci Pollut Res 21, 9717–9726 (2014). https://doi.org/10.1007/s11356-014-2887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2887-7

Keywords

Navigation