Skip to main content

Advertisement

Log in

Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m−3 day−1, for 2,4-D, and 12.8 to 59.3 g m−3 day−1 for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56 ± 0.44; picloram, 94.58 ± 2.62; and chemical oxygen demand (COD), 89.42 ± 3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day−1, corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-El-Haleem D (2003) Acinetobacter: environmental and biotechnological applications. Afr J Biotechnol 2(4):71–74

    Google Scholar 

  • Adams SL, Horvat ST, Irwin AE, Junkin RW, Koreman NM, Blakley BR (1991) The effects of Tordon 202c exposure on urethan-induced lung adenoma formation in female CD-1 mice. Vet Hum Toxicol 33(3):209–211

    CAS  Google Scholar 

  • Arias E (2009) S-phase, apoptosis and peroxisome proliferation in avian hepatocyte cultures following exposure to the phenoxy herbicide 2,4-D. Toxicol Environ Chem 91(4):671–677. doi:10.1080/02772240802445449

    Article  CAS  Google Scholar 

  • Baglieri A, Nègre M, Trotta F, Bracco P, Gennari M (2013) Organo-clays and nanosponges for acquifer bioremediation: adsorption and degradation of triclopyr. J Environ Sci Health Part B 48(9):784–792. doi:10.1080/03601234.2013.780943

    Google Scholar 

  • Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol 51(2):432–434

    CAS  Google Scholar 

  • Berthiaume C, Gilbert Y, Fournier-Larente J, Pluchon C, Filion G, Jubinville E, Sérodes JB, Rodriguez M, Duchaine C, Charette SJ (2014) Identification of dichloroacetic acid degrading Cupriavidus bacteria in a drinking water distribution network model. J Appl Microbiol. doi:10.1111/jam.12353

    Google Scholar 

  • Bharadwaj L, Dhami K, Schneberger D, Stevens M, Renaud C, Ali A (2005) Altered gene expression in human hepatoma HepG2 cells exposed to low level 2,4-dichlorophenoxyacetic acid and potassium nitrate. Toxicol in Vitro 19(5):603–619. doi:10.1016/j.tiv.2005.03.011

    Article  CAS  Google Scholar 

  • Blakley BR (1997) Effect of roundup and Tordon 202c herbicides on antibody production in mice. Vet Hum Toxicol 39(4):204–206

    CAS  Google Scholar 

  • Buchwalter D, Jenkins J, Kerkvliet N, Thompson P, Trevathan W (2002) 2,4-D pesticide fact sheet: forestry use. Oregon State University. http://www.oregon.gov/odf/privateforests/docs/24dfactsheet.pdf. Accessed February 11, 2014

  • Bukowska B (2006) Toxicity of 2,4-dichlorophenoxyacetic acid—molecular mechanisms. Pol J Environ Stud 15(3):365–374

    CAS  Google Scholar 

  • Cassidy DP, Irvine RL (1999) Use of calcium peroxide to provide oxygen for the contaminant biodegradation in a saturated soil. J Hazard Mater 69(1):25–39. doi:10.1016/S0304-3894(99)00051-5

    Article  CAS  Google Scholar 

  • Chaudhry AR, Huang GH (1988) Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J Bacteriol 170(9):3897–3902

    CAS  Google Scholar 

  • Chen C-L, Qi W, Wang J-Y (2013) Microbial cocktail for bioconversion of green waste to reducing sugars. J Biosci Bioeng 115(1):82–85. doi:10.1016/j.jbiosc.2012.08.014

    Article  CAS  Google Scholar 

  • Cox C (1998) Picloram. Herbicide factsheet. J Pestic Reform 18:13–20

    Google Scholar 

  • Cox C (1999) 2,4-D: ecological effects. Herbicide factsheet. J Pestic Reform 19:14–19

    Google Scholar 

  • Dennis DS, Gillespie WH, Maxey RA, Shaw R (1977) Accumulation and persistence of picloram (Tordon 10K) in surface water and bottom sediments in West Virginia. Arch Environ Contam Toxicol 6(1):421–433. doi:10.1007/BF02097782

    Article  CAS  Google Scholar 

  • Dockery PH (2000) Agent White a.k.a. Tordon 101. Vietnam Veterans Institute. http://www.vvi.org/Content/agentwhite.asp. Accessed February 20, 2014

  • Durruty I, Okada E, Gonzalez JF, Murialdo SE (2011) Degradation of chlorophenol mixtures in a fed-batch system by two soil bacteria. Water SA [online] 37(4):547–552. doi:10.4314/wsa.v37i4.13

    CAS  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57(5):1441–1447

    CAS  Google Scholar 

  • EPA (1995) Reregistration eligibility decision—picloram. Office of Pesticide Programs, Washington, DC

    Google Scholar 

  • Friman H, Schechter A, Ioffe Y, Nitzan Y, Cahan R (2013) Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. Microbial Biotech 6(4):425–434. doi:10.1111/1751-7915.12026

    Article  Google Scholar 

  • Gallagher EP, Di Giulio TR (1991) Effects of 2,4-dichlorophenoxyacetic acid and picloram on biotransformation, peroxisomal and serum enzyme activities in channel catfish (Ictalurus punctatus). Toxicol Lett 57(1):65–72. doi:10.1016/0378-4274(91)90120-U

    Article  CAS  Google Scholar 

  • Ghauch A (2001) Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere 43:1109–1117

    Article  CAS  Google Scholar 

  • Gómez-De Jesús A, Romano-Baez FJ, Leyva-Amezcua L, Juárez-Ramírez C, Ruiz-Ordaz N, Galíndez-Mayer J (2009) Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation. J Hazard Mater 161:1140–1149. doi:10.1016/j.jhazmat.2008.04.077

    Article  Google Scholar 

  • Hach Company (1997) Hach water analysis handbook, 5th edn. Hach Company, Colorado

    Google Scholar 

  • Henderson AD, Demond AH (2007) Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ Eng Sci 24(4):401–423. doi:10.1089/ees.2006.0071

    Google Scholar 

  • Herrera-González VE, Ruiz-Ordaz N, Galíndez-Mayer J, Juárez-Ramírez C, Santoyo-Tepole F, Marrón Montiel E (2013) Biodegradation of the herbicide propanil, and its 3,4-dichloroaniline by-product in a continuously operated biofilm reactor. World J Microbiol Biotechnol 29(3):467–474. doi:10.1007/s11274-012-1200-5

    Article  Google Scholar 

  • Kalipci E, Özdemir C (2011) Investigation of the ecotoxicologic effect of pesticide industry wastewater on the pancreas and liver of rats. Afr J Biotechnol 10(12):2290–2294. doi:10.5897/AJB10.2509

    CAS  Google Scholar 

  • Kar S, Swaminathan T, Baradarajan A (1997) Biodegradation of phenol and cresol isomer mixtures by Arthrobacter. World J Microbiol Biotechnol 13(6):659–663. doi:10.1023/A:1018518904730

    Article  CAS  Google Scholar 

  • Karanasios E, Tsiropoulos NG, Karpouzas DG (2012) On-farm biopurification systems for the depuration of pesticide wastewaters: recent biotechnological advances and future perspectives. Biodegradation 23(6):787–802. doi:10.1007/s10532-012-9571-8

    Article  CAS  Google Scholar 

  • Kelly MO, Hallberg KB, Tuovinen OH (1989) Biological degradation of 2,4-dichlorophenoxyacetic acid: chloride mass balance in stirred tank reactors. Appl Environ Microbiol 55(10):2717–2719

    CAS  Google Scholar 

  • Kravvariti K, Tsiropoulos NG, Karpouzas DG (2010) Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Manag Sci 66(10):1122–1128. doi:10.1002/ps.1990

    Article  CAS  Google Scholar 

  • Lajmanovich RC, Junges CM, Attademo AM, Peltzer PM, Cabagna-Zenklusen MC, Basso A (2013) Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles. Water Air Soil Pollut. doi:10.1007/s11270-012-1404-1

    Google Scholar 

  • Lerch TZ, Dignac M-F, Barriuso E, Mariotti A (2011) Effect of glucose on the fatty acid composition of Cupriavidus necator JMP134 during 2,4-dichlorophenoxyacetic acid degradation: implications for lipid-based stable isotope probing methods. Appl Environ Microbiol 77(20):7296–7306. doi:10.1128/AEM.06438-11

    Article  CAS  Google Scholar 

  • Lindsay S, Chasse J, Butler RA, Morrill W, Van Beneden RJ (2010) Impacts of stage-specific acute pesticide exposure on predicted population structure of the soft-shell clam, Mya arenaria. Aquat Toxicol 98(3):265–274. doi:10.1016/j.aquatox.2010.02.012

    Article  CAS  Google Scholar 

  • Liu FY, Hong MZ, Liu DM, Li YW, Shou PS, Yan H, Shi GQ (2007) Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J Environ Sci (China) 19(10):1257–1260. doi:10.1016/S1001-0742(07)60205-8

    Article  CAS  Google Scholar 

  • Loupasaki E, Diamadopoulos E (2013) Attached growth systems for wastewater treatment in small and rural communities: a review. J Chem Technol Biotechnol 88(2):190–204. doi:10.1002/jctb.3967

    Article  CAS  Google Scholar 

  • Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, Li S (2013) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour Technol 127:337–342. doi:10.1016/j.biortech.2012.09.116

    Article  CAS  Google Scholar 

  • Macías-Flores A, Tafoya-Garnica A, Ruiz-Ordaz N, Salmerón-Alcocer A, Juárez-Ramírez C, Ahuatzi-Chacón D, Mondragón-Parada ME, Galíndez-Mayer J (2009) Atrazine biodegradation by a bacterial community immobilized in two types of packed-bed biofilm reactors. World J Microbiol Biotechnol 25:2195–2204. doi:10.1007/s11274-009-0125-0

    Article  Google Scholar 

  • Maire MA, Rast C, Landkocz Y, Vasseur P (2007) 2,4-Dichlorophenoxyacetic acid: effects on Syrian hamster embryo (SHE) cell transformation, c-Myc expression, DNA damage and apoptosis. Mutat Res 631(2):124–136. doi:10.1016/j.mrgentox.2007.03.008

    Article  CAS  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35(1):162–177. doi:10.1016/j.envint.2008.07.018

    Article  Google Scholar 

  • Moreno-Andrade I, Buitrón G (2012) Biodegradation of 4-methylaniline in a sequencing batch reactor. Water Sci Technol 65(6):1081–1086. doi:10.2166/wst.2012.948

    Article  CAS  Google Scholar 

  • Naftz DL, Fuller CC, Morrison SJ, Davis JA (2002) Handbook of groundwater remediation using permeable reactive barriers. Applications to radionuclides, trace metals, and nutrients. Academic Press, London

  • Naik MN, Jackson RB, Stokes J, Swaby RJ (1972) Microbial degradation and phytotoxicity of picloram and other substituted pyridines. Soil Biol Biochem 4(3):313–323. doi:10.1016/0038-0717(72)90027-2

    Article  CAS  Google Scholar 

  • Nava-Arenas I, Ruiz-Ordaz N, Galindez-Mayer J, Ramos-Monroy O, Juárez-Ramírez C, Curiel-Quesada E, Poggi-Varaldo H (2012) Acclimation of a microbial community to degrade a combination of organochlorine herbicides in a biofilm reactor. Environ Eng Manag J 11(10):1753–1761

    CAS  Google Scholar 

  • Nickzad A, Mogharei A, Monazzami A, Jamshidian H, Vahabzadeh F (2012) Biodegradation of phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor. Water Environ Res 84(8):626–634. doi:10.2175/106143012X13373550427075

    Article  CAS  Google Scholar 

  • Oakes DJ, Pollak JK (1999) Effects of a herbicide formulation, Tordon 75D, and its individual components on the oxidative functions of mitochondria. Toxicol 136(1):41–52. doi:10.1016/S0300-483X(99)00055-4

    Article  CAS  Google Scholar 

  • Oakes DJ, Webster WS, Brown-Woodman PDC, Ritchie HE (2002) Testicular changes induced by chronic exposure to the herbicide formulation Tordon 75D (2,4-dichlorophenoxyacetic acid and picloram) in rats. Reprod Toxicol 16(3):281–289. doi:10.1016/S0890-6238(02)00015-1

    Article  CAS  Google Scholar 

  • Olsen RA, Bakken LR (1987) Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb Ecol 13:59–74

    Article  CAS  Google Scholar 

  • Palleroni NJ, Port AM, Chang H-K, Zylstra GJ (2004) Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int J Syst Evol Microbiol 54(4):1203–1207. doi:10.1099/ijs.0.03016-0

    Article  CAS  Google Scholar 

  • Park J, Kukor JJ, Abriola LM (2002) Characterization of the adaptive response to the trichloroethylene-mediated stresses in Ralstonia pickettii PKO1. Appl Environ Microbiol 68(11):5231–5240. doi:10.1128/AEM.68.11.5231-5240.2002

    Article  CAS  Google Scholar 

  • Passeport E, Richard B, Chaumont C, Margoum C, Liger L, Gril J-J, Tournebize J (2013) Dynamics and mitigation of six pesticides in a “Wet” forest buffer zone. Environ Sci Pollut Res. doi:10.1007/s11356-013-1724-8

    Google Scholar 

  • Pesce S, Martin-Laurent F, Rouard N, Montuell B (2009) Potential for microbial diuron mineralisation in a small wine-growing watershed: from treated plots to lotic receiver hydrosystem. Pest Manag Sci 65(6):651–657. doi:10.1002/ps.1729

    Article  CAS  Google Scholar 

  • Polyrakis IT (2009) Environmental pollution from pesticides. In: Costa R, Kristbergsson K (eds) Predictive modeling and risk assessment, vol 4. Springer Science + Business Media, Heidelberg, pp 201–224. doi:10.1007/978-1-387-68776-6

    Chapter  Google Scholar 

  • Prado AG, Airoldi C (2001) Toxic effect caused on microflora of soil by pesticide picloram application. J Environ Monit 3(4):394–3977. doi:10.1039/b103872a

    Article  CAS  Google Scholar 

  • Ramos-Monroy O, Ruiz-Ordaz N, Galíndez-Mayer J, Juárez-Ramirez C, Nava-Arenas I, Ordaz-Guillén Y (2013) Operational stability to changes in composition of herbicide mixtures fed to a laboratory-scale biobarrier. Appl Biochem Biotechnol 169(4):1418–1430. doi:10.1007/s12010-012-0082-1

    Article  CAS  Google Scholar 

  • Reichenberger S, Bach M, Skitschak A, Frede H-G (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ 384(1–3):1–35. doi:10.1016/j.scitotenv.2007.04.046

    Article  CAS  Google Scholar 

  • Relman DA (1993) Universal bacterial 16S rRNA amplification and sequencing. In: Persing HD, Smith TF, Tenover CF, White ST (eds) Diagnostic molecular microbiology. Principles and applications. American Chemical Society, Washington DC, pp 489–495

    Google Scholar 

  • Rodríguez-Alcocer DJ, Giacoman-Vallejos G, Champagne P (2012) Assessment of the plug flow and dead volume ratios in a sub-surface horizontal-flow packed-bed reactor as a representative model of a horizontal constructed wetland. Ecol Eng 40:18–26. doi:10.1016/j.ecoleng.2011.10.018

    Article  Google Scholar 

  • Sadowsky MJ, Koskinen WC, Bischoff M, Barber LB, Becker JM, Turco RF (2009) Rapid and complete degradation of the herbicide picloram by Lipomyces kononenkoae. J Agric Food Chem 57(11):4878–4882. doi:10.1021/jf900067f

    Article  CAS  Google Scholar 

  • Sagardoy JA. 1993. An overview of pollution of water by agriculture. In: Prevention of water pollution by agriculture and related activities, Proceedings of the FAO Expert Consultation, Santiago, Chile, 20–23 Oct. 1992. Water Report 1. FAO, Rome. pp. 19-26

  • Sandoval-Carrasco CA, Ahuatzi-Chacón D, Galíndez-Mayer J, Ruiz-Ordaz N, Juárez-Ramírez C, Martínez-Jerónimo F (2013) Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor. Bioresour Technol. doi:10.1016/j.biortech.2013.02.068

    Google Scholar 

  • Schultz R, Peall SKC (2001) Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment. South Afr Environ Sci Technol 35(2):422–426. doi:10.1021/es0001198

    Article  Google Scholar 

  • Schwartz MA, Tabet SR, Collier AC, Wallis CK, Carlson LC, Nguyen TT, Kattar MM, Coyle MB (2002) Central venous catheter-related bacteremia due to Tsukamurella species in the immunocompromised host: a case series and review of the literature. Clin Infect Dis 35(7):72–77. doi:10.1086/342561

    Article  Google Scholar 

  • Sun B, Ko K, Ramsay JA (2011) Biodegradation of 1,4-dioxane by a Flavobacterium. Biodegradation 22(3):651–659. doi:10.1007/s10532-010-9438-9

    Article  CAS  Google Scholar 

  • Tayeb W, Nakbi A, Trabelsi M, Miled A, Hammami M (2012) Biochemical and histological evaluation of kidney damage after sub-acute exposure to 2,4-dichlorophenoxyacetic herbicide in rats: involvement of oxidative stress. Toxicol Mech Methods 22(9):696–704. doi:10.3109/15376516.2012.717650

    Article  CAS  Google Scholar 

  • Walters J (2011) Environmental fate of 2,4-dichlorophenoxyacetic acid. Environmental Monitoring and Pest Management. Department of Pesticide Regulation. Sacramento, CA. http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/24-d.pdf. Accessed February 20, 2014

  • Wang C, Li D, Wang C (2009) Biodegradation of naphthalene, phenanthrene, anthracene and pyrene by Microbacterium sp. 3-28. Chin J Appl Environ Biol 15(3):361–366. doi:10.3724/SP.J.1145.2009.00361

    CAS  Google Scholar 

  • Wu W-T, Jean M-D (2012) Evaluation of light irradiation on decolorization of azo dyes by Tsukamurella sp. J8025. Appl Mech Mater 145:304–308. doi:10.4028/www.scientific.net/AMM.145.304

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ramos-Monroy O. was a holder of a research grant from Conacyt. Ruiz-Ordaz N., Juárez-Ramírez C., and Galíndez-Mayer J. are holders of grants from COFAA-IPN, SIP-IPN, and SNI-Conacyt. The authors express their thanks to the staff of the Spectroscopy Central, ENCB IPN, for HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cutberto Juvencio Galíndez-Mayer.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordaz-Guillén, Y., Galíndez-Mayer, C.J., Ruiz-Ordaz, N. et al. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environ Sci Pollut Res 21, 8765–8773 (2014). https://doi.org/10.1007/s11356-014-2809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2809-8

Keywords

Navigation