Skip to main content
Log in

Medium optimization for the production of anti-cyanobacterial substances by Streptomyces sp. HJC-D1 using response surface methodology

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bioremediation using isolated anti-cyanobacterial microorganism has been widely applied in harmful algal blooms (HABs) control. In order to improve the secretion of activated anti-cyanobacterial substances, and lower the cost, a sequential optimization of the culture medium based on statistical design was employed for enhancing the anti-cyanobacterial substances production and chlorophyll a (Chl a) removal by Streptomyces sp. HJC-D1 in the paper. Sucrose and KNO3 were selected as the most suitable carbon and nitrogen sources based on the one-at-a-time strategy method, and sucrose, KNO3 and initial pH were found as major factors that affected the anti-cyanobacterial ability of the isolated stain via the Plackett–Burman design. Based on the response surface and canonical analysis, the optimum condition of culture medium was obtained at 22.73 g l-1 of sucrose, 0.96 g l-1 of KNO3, and initial pH 8.82, and the Chl a removal efficiency by strain HJC-D1 increased from 63 ± 2 % to 78 ± 2 % on the optimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association (APHA)

  • Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp IMI 387099. Bioresour Technol 98(3):504–510. doi:10.1016/j.biortech.2006.02.009

    Article  CAS  Google Scholar 

  • Bankar SB, Singhal RS (2010) Optimization of poly-epsilon-lysine production by Streptomyces noursei NRRL 5126. Bioresour Technol 101(21):8370–8375. doi:10.1016/j.biortech.2010.06.004

    Article  CAS  Google Scholar 

  • Chen FZ, Song XL, Hu YH, Liu ZW, Qin BQ (2009) Water quality improvement and phytoplankton response in the drinking water source in Meiliang Bay of Lake Taihu, China. Ecol Eng 35(11):1637–1645. doi:10.1016/j.ecoleng.2008.01.001

    Article  Google Scholar 

  • Choi HJ, Kim BH, Kim JD, Han MS (2005) Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol Control 33(3):335–343. doi:10.1016/j.biocontrol.2005.03.007

    Article  Google Scholar 

  • Chow CWK, Drikas M, House J, Burch MD, Velzeboer RMA (1999) The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Res 33(15):3253–3262

    Article  CAS  Google Scholar 

  • Fang F, Zeng RJ, Sheng GP, Yu HQ (2010) An integrated approach to identify the influential priority of the factors governing anaerobic H2 production by mixed cultures. Water Res 44(10):3234–3242. doi:10.1016/j.watres.2010.03.001

    Article  CAS  Google Scholar 

  • Fu XT, Lin H, Kim SM (2009) Optimization of medium composition and culture conditions for agarase production by Agarivorans albus YKW-34. Proc Biochem 44(10):1158–1163. doi:10.1016/j.procbio.2009.06.012

    Article  CAS  Google Scholar 

  • Gao H, Liu M, Liu JT, Dai HQ, Zhou XL, Liu XY, Zhuo Y, Zhang WQ, Zhang LX (2009) Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 100(17):4012–4016. doi:10.1016/j.biortech.2009.03.013

    Article  CAS  Google Scholar 

  • Garcia-Villada L, Rico M, Altamirano M, Sanchez-Martin L, Lopez-Rodas V, Costas E (2004) Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. Water Res 38(8):2207–2213. doi:10.1016/j.watres.2004.01.036

    Article  CAS  Google Scholar 

  • He J, Zhen QW, Qiu N, Liu ZD, Wang BJ, Shao ZZ, Yu ZN (2009) Medium optimization for the production of a novel bioflocculant from Halomonas sp V3a' using response surface methodology. Bioresour Technol 100(23):5922–5927. doi:10.1016/j.biortech.2009.06.087

    Article  CAS  Google Scholar 

  • Hitzfeld BC, Hoger SJ, Dietrich DR (2000) Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Pers 108:113–122. doi:10.2307/3454636

    Article  CAS  Google Scholar 

  • Hua XH, Li JH, Li JJ, Zhang LH, Cui Y (2009) Selective inhibition of the cyanobacterium, Microcystis, by a Streptomyces sp. Biotechnol Lett 31(10):1531–1535. doi:10.1007/s10529-009-0051-0

    Article  CAS  Google Scholar 

  • Jia Y, Han GM, Wang CY, Guo P, Jiang WX, Li XN, Tian XJ (2011) The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. J Hazard Mater 183(1–3):176–181. doi:10.1016/j.jhazmat.2010.07.009

    Google Scholar 

  • Kong Y, Chen J, Xu XY, Zhu L (2013a) Spectra characteristic of degradation products and inhibition mechanism of Streptomyces sp HJC-D1 on Microcystis aeruginosa. Spectrosc Spectr Anal 33:167–171

    CAS  Google Scholar 

  • Kong Y, Xu XY, Zhu L (2013b) Cyanobactericidal effect of Streptomyces sp HJC-D1 on Microcystis auruginosa. PLoS ONE 8(2):e57654

    Article  CAS  Google Scholar 

  • Kong Y, Zhu L, Zou P, Qi JQ, Yang Q, Song LM, Xu XY, Miao LH (2013c) Isolation and characterization of dissolved organic matter fractions from antialgal products of Microcystis aeruginosa. Environ Sci Pollut Res. doi:10.1007/s11356-013-2114-y

    Google Scholar 

  • Kong Y, Zou P, Yang Q, Xu XY, Miao LH, Zhu L (2013d) Physiological responses of Microcystis aeruginosa under the stress of antialgal actinomycetes. J Hazard Mater 262:274–280

    Article  CAS  Google Scholar 

  • Lakshmikanth M, Manohar S, Souche Y, Lalitha J (2006) Extracellular b-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp. AG LSL-1. World J Microbiol Biotechnol 22:1087–1094

    Article  CAS  Google Scholar 

  • Liu XY, Ren B, Gao H, Liu M, Dai HQ, Song FH, Yu ZY, Wang SJ, Hu JC, Kokare CR, Zhang LX (2012) Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS ONE 7(5):e34430. doi:10.1371/journal.pone.003443

    Article  CAS  Google Scholar 

  • Lovejoy C, Bowman JP, Hallegraeff GM (1998) Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl Environ Microbiol 64(8):2806–2813

    CAS  Google Scholar 

  • Manikandan M, Pasic L, Kannan V (2009) Optimization of growth media for obtaining high-cell density cultures of halophilic archaea (family Halobacteriaceae) by response surface methodology. Bioresour Technol 100(12):3107–3112. doi:10.1016/j.biortech.2009.01.033

    Article  CAS  Google Scholar 

  • Mao XB, Eksriwong T, Chauvatcharin S, Zhong JJ (2005) Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Proc Biochem 40(5):1667–1672. doi:10.1016/j.procbio.2004.06.046

    Article  CAS  Google Scholar 

  • Pitois S, Jackson MH, Wood BJB (2001) Sources of the eutrophication problems associated with toxic algae: an overview. J Environ Health 64(5):25–32

    CAS  Google Scholar 

  • Purama RK, Goyal A (2008) Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresour Technol 99(15):7108–7114. doi:10.1016/j.biortech.2008.01.032

    Article  CAS  Google Scholar 

  • Qin BQ, Yang LY, Chen FZ, Zhu GW, Zhang L, Chen YY (2006) Mechanism and control of lake eutrophication. Chin Sci Bull 51(19):2401–2412. doi:10.1007/s11434-006-2096-y

    Article  CAS  Google Scholar 

  • Rao YK, Tsay KJ, Wu WS, Tzeng YM (2007) Medium optimization of carbon and nitrogen sources for the production of spores from Bacillus amyloliquefaciens B128 using response surface methodology. Proc Biochem 42(4):535–541. doi:10.1016/j.procbio.2006.10.007

    Article  CAS  Google Scholar 

  • Rapala J, Lahti K, Rasanen LA, Esala AL, Niemela SI, Sivonen K (2002) Endotoxins associated with cyanobacteria and their removal during drinking water treatment. Water Res 36(10):2627–2635

    Article  CAS  Google Scholar 

  • Redhead K, Wright SJL (1978) Isolation and properties of fungi that lyse blue-green-algae. Appl Environ Microbiol 35(5):962–969

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(Mar):1–61

    Article  Google Scholar 

  • Sansonetti S, Curcio S, Calabro V, Iorio G (2010) Optimization of ricotta cheese whey (RCW) fermentation by response surface methodology. Bioresour Technol 101(23):9156–9162. doi:10.1016/j.biortech.2010.07.030

    Article  CAS  Google Scholar 

  • Shi SY, Liu YD, Shen YW, Li GB, Li DH (2006) Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol Control 39(3):345–351. doi:10.1016/j.biocontrol.2006.06.011

    Article  Google Scholar 

  • Song XJ, Zhang XC, Kuang CH, Zhu LY, Guo N (2007) Optimization of fermentation parameters for the biomass and DHA production of Schizochytrium limacinum OUC88 using response surface methodology. Proc Biochem 42(10):1391–1397. doi:10.1016/j.procbio.2007.07.014

    Article  CAS  Google Scholar 

  • Tabbene O, Ben Slimene I, Djebali K, Mangoni ML, Urdaci MC, Limam F (2009) Optimization of medium composition for the production of antimicrobial activity by Bacillus subtilis B38. Biotechnol Progr 25(5):1267–1274. doi:10.1002/btpr.202

    Article  CAS  Google Scholar 

  • Tang XQ, Wu M, Yang WJ, Yin W, Jin F, Ye M, Currie N, Scholz M (2012) Ecological strategy for eutrophication control. Water Air Soil Pollut 223:723–737

    Article  CAS  Google Scholar 

  • Wang X, Li ZJ, Su JQ, Tian Y, Ning XR, Hong HS, Zheng TL (2010) Lysis of a red-tide causing alga, Alexandrium tamarense, caused by bacteria from its phycosphere. Biol Control 52(2):123–130. doi:10.1016/j.biocontrol.2009.10.004

    Article  Google Scholar 

  • Zinatizadeh AAL, Mohamed AR, Abdullah AZ, Mashitah MD, Isa MH, Najafpour GD (2006) Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water Res 40(17):3193–3208. doi:10.1016/j.watres.2006.07.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Technology R&D Program (Nos. 2006BAJ08B01/2012BAJ25B07), the National Key Science and Technology Project: Water Pollution Control and Treatment (No. 2012ZX07101-012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Zhu or Xiangyang Xu.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, Y., Zou, P., Miao, L. et al. Medium optimization for the production of anti-cyanobacterial substances by Streptomyces sp. HJC-D1 using response surface methodology. Environ Sci Pollut Res 21, 5983–5990 (2014). https://doi.org/10.1007/s11356-014-2532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2532-5

Keywords

Navigation